Michael I. Cotterell

  • Citations Per Year
Learn More
A new experiment is presented for the measurement of single aerosol particle extinction efficiencies, Qext, combining cavity ring-down spectroscopy (CRDS, λ = 405 nm) with a Bessel beam trap (λ = 532 nm) in tandem with phase function (PF) measurements. This approach allows direct measurements of the changing optical cross sections of individual aerosol(More)
We present measurements of the evolving extinction cross sections of individual aerosol particles (spanning 700-2500 nm in radius) during the evaporation of volatile components or hygroscopic growth using a combination of a single particle trap formed from a Bessel light beam and cavity ring-down spectroscopy. For single component organic aerosol droplets(More)
Representing the physicochemical properties of aerosol particles of complex composition is of crucial importance for understanding and predicting aerosol thermodynamic, kinetic, and optical properties and processes and for interpreting and comparing analysis methods. Here, we consider the representations of the density and refractive index of(More)
We report a combination of experimental (velocity map imaging measurements of the methyl (Me) radical products) and ab initio electronic structure studies that explore the influence of substituents (Y) on the dynamics of S-Me bond fission following excitation to the first excited S1 states of thioanisole and three 4-substituted thioanisoles (4-YPhSMe, with(More)
A single horizontally-propagating zeroth order Bessel laser beam with a counter-propagating gas flow was used to confine single fine-mode aerosol particles over extended periods of time, during which process measurements were performed. Particle sizes were measured by the analysis of the angular variation of light scattered at 532 nm by a particle in the(More)
The interaction of atmospheric aerosols with radiation remains a significant source of uncertainty in modeling radiative forcing. Laboratory measurements of the microphysical properties of atmospherically relevant particles is one approach to reduce this uncertainty. We report a new method to investigate light absorption by a single aerosol particle,(More)
  • 1