Learn More
HAMP domains connect extracellular sensory with intracellular signaling domains in over 7500 proteins, including histidine kinases, adenylyl cyclases, chemotaxis receptors, and phosphatases. The solution structure of an archaeal HAMP domain shows a homodimeric, four-helical, parallel coiled coil with unusual interhelical packing, related to the canonical(More)
HAMP domains mediate signal transduction in over 7500 enzyme-coupled receptors represented in all kingdoms of life. The HAMP domain of the putative archaeal receptor Af1503 has a parallel, dimeric, four-helical coiled coil structure, but with unusual core packing, related to canonical packing by concerted axial rotation of the helices. This has led to the(More)
Bacterial transmembrane receptors regulate an intracellular catalytic output in response to extracellular sensory input. To investigate the conformational changes that relay the regulatory signal, we have studied the HAMP domain, a ubiquitous intracellular module connecting input to output domains. HAMP forms a parallel, dimeric, four-helical coiled coil,(More)
Bacterial chemotaxis receptors are elongated homodimeric coiled-coil bundles, which transduce signals generated in an N-terminal sensor domain across 15-20nm to a conserved C-terminal signaling subdomain. This signal transduction regulates the activity of associated kinases, altering the behavior of the flagellar motor and hence cell motility. Signaling is(More)
The core of swapped-hairpin and double-psi beta barrels is formed by duplication of a conserved betaalphabeta element, suggesting a common evolutionary origin. The path connecting the two folds is unclear as the two barrels are not interconvertible by a simple topological modification, such as circular permutation. We have identified a protein family whose(More)
Structures of full-length, membrane-bound proteins are essential for understanding transmembrane signaling mechanisms. However, in prokaryotic receptors no such structure has been reported, despite active research for many years. Here we present results of an alternative strategy, whereby a transmembrane receptor is made soluble by selective mutations to(More)
Chaperones and proteases share the ability to interact with unfolded proteins. Here we show that enzymatically inactive forms of the aspartic proteases HIV-1 protease and pepsin have inherent chaperone-like activity and can prevent the aggregation of denatured substrate proteins. In contrast to proteolysis, which requires dimeric enzymes, chaperone-like(More)
Although the identification of the multigene family encoding mammalian olfactory receptors were identified more than 20 years ago, we are far from understanding olfactory perception because of the difficulties in functional expression of these receptors in heterologous cell systems. Cell-free (CF) or in vitro expression systems offer an elegant alternative(More)
This work is about gas biosensing with a cytochrome c biosensor. Emphasis is put on the analysis of the sensing process and a mathematical model to make predictions about the biosensor response. Reliable predictions about biosensor responses can provide valuable information and facilitate biosensor development, particularly at an early development stage.(More)
Microarray technology is increasingly used for a miniaturised and parallel measurement of binding constants. In microarray experiments heterogeneous functionalization of surfaces with capture molecules is a problem commonly encountered. For multivalent ligands, especially, however, binding is strongly affected by receptor density. Here we show that(More)