Michael Hsiao

Learn More
MicroRNA-122 (miR-122), which accounts for 70% of the liver's total miRNAs, plays a pivotal role in the liver. However, its intrinsic physiological roles remain largely undetermined. We demonstrated that mice lacking the gene encoding miR-122a (Mir122a) are viable but develop temporally controlled steatohepatitis, fibrosis, and hepatocellular carcinoma(More)
UNLABELLED MicroRNAs (miRNAs), which are inhibitors of gene expression, participate in diverse biological functions and in carcinogenesis. In this study, we show that liver-specific microRNA-122 (miR-122) is significantly down-regulated in liver cancers with intrahepatic metastasis and negatively regulates tumorigenesis. Restoration of miR-122 in metastatic(More)
G9a is a mammalian histone methyltransferase that contributes to the epigenetic silencing of tumor suppressor genes. Emerging evidence suggests that G9a is required to maintain the malignant phenotype, but the role of G9a function in mediating tumor metastasis has not been explored. Here, we show that G9a is expressed in aggressive lung cancer cells, and(More)
Hypermethylation-mediated tumor suppressor gene silencing plays a crucial role in tumorigenesis. Understanding its underlying mechanism is essential for cancer treatment. Previous studies on human N-alpha-acetyltransferase 10, NatA catalytic subunit (hNaa10p; also known as human arrest-defective 1 [hARD1]), have generated conflicting results with regard to(More)
Dynamic voltage and frequency scaling of the CPU has been identified as one of the most effective ways to reduce energy consumption of a program. This paper discusses a compilation strategy that identifies scaling opportunities without significant overall performance penalty. Simulation results show CPU energy savings of 3.97%23.75% for the SPECfp95(More)
LATS2 is a member of the LATS tumor suppressor family. It has been implicated in regulation of the cell cycle and apoptosis. Frequent loss of heterozygosity (LOH) of LATS2 has been reported in human esophageal cancer. But, the LATS2 gene expression and its regulatory mechanism in esophageal cancer remain unclear. The present study has shown that LATS2(More)
Biocompatible Au nanoparticles with surfaces modified by PEG (polyethylene glycol) were developed in view of possible applications for the enhancement of radiotherapy. Such nanoparticles exhibit preferential deposition at tumor sites due to the enhanced permeation and retention (EPR) effect. Here, we systematically studied their effects on EMT-6 and CT26(More)
Despite a general repression of translation under hypoxia, cells selectively upregulate a set of hypoxia-inducible genes. Results from deep sequencing revealed that Let-7 and miR-103/107 are hypoxia-responsive microRNAs (HRMs) that are strongly induced in vascular endothelial cells. In silico bioinformatics and in vitro validation showed that these HRMs are(More)
Angiopoietin-like protein 1 (ANGPTL1) is a potent regulator of angiogenesis. Growing evidence suggests that ANGPTL family proteins not only target endothelial cells but also affect tumor cell behavior. In a screen of 102 patients with lung cancer, we found that ANGPTL1 expression was inversely correlated with invasion, lymph node metastasis, and poor(More)
The leading cause of death in cancer patients is cancer metastasis, for which there is no effective treatment. MicroRNAs (miRNA) have been shown to play a significant role in cancer metastasis through regulation of gene expression. The adenovirus type 5 E1A (E1A) is associated with multiple tumor-suppressing activities including the inhibition of(More)