Learn More
Narcolepsy is caused by a loss of orexin/hypocretin signaling, resulting in chronic sleepiness, fragmented non-rapid eye movement sleep, and cataplexy. To identify the neuronal circuits underlying narcolepsy, we produced a mouse model in which a loxP-flanked gene cassette disrupts production of the orexin receptor type 2 (OX2R; also known as HCRTR2), but(More)
Down syndrome (DS) is associated with neurological complications, including cognitive deficits that lead to impairment in intellectual functioning. Increased GABA-mediated inhibition has been proposed as a mechanism underlying deficient cognition in the Ts65Dn (TS) mouse model of DS. We show that chronic treatment of these mice with RO4938581(More)
UNLABELLED (11)C-ABP688 (3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-(11)C-methyl-oxime), a noncompetitive and highly selective antagonist for the metabotropic glutamate receptor subtype 5 (mGluR5), was evaluated for its potential as a PET agent. METHODS ABP688 was radiolabeled with (11)C by reacting (11)C-methyl iodide with the sodium salt of(More)
BACKGROUND Noninvasive preclinical imaging methodologies such as small animal positron emission tomography (PET) allow the repeated measurement of the same subject which is generally assumed to reduce the variability of the experimental outcome parameter and to produce more robust results. In this study, the variability of tracer uptake in the rodent brain(More)
UNLABELLED The novel, dedicated small animal PET tomograph, quad-HIDAC, offers submillimeter resolution in instrumental characterization experiments. The aim of this study was to establish the tomograph's utility in a biologic application and to demonstrate the feasibility of rapid dynamic neuroreceptor imaging in mice. METHODS We used the(More)
INTRODUCTION The clinically established positron emission tomography (PET) tracers 6-[(18)F]-fluoro-l-DOPA ([(18)F]FDOPA), 6-[(18)F]-fluoro-l-m-tyrosine ([(18)F]FMT) and 2beta-carbomethoxy-3beta-(4-chlorophenyl)-8-(2-[(18)F]-fluoroethyl)-nortropane ([(18)F]FECNT) serve as markers of presynaptic integrity of dopaminergic nerve terminals in humans. This study(More)
BACKGROUND Fragile X syndrome (FXS) is the most common genetic cause for intellectual disability. Fmr1 knockout (KO) mice are an established model of FXS. Chronic pharmacological inhibition of metabotropic glutamate receptor 5 (mGlu5) in these mice corrects multiple molecular, physiological, and behavioral phenotypes related to patients' symptoms. To better(More)
Bombesin receptors are under intense investigation as molecular targets since they are overexpressed in several prevalent solid tumors. We rationally designed and synthesized a series of modified bombesin (BN) peptide analogs to study the influence of charge and spacers at the N-terminus, as well as amino acid substitutions, on both receptor binding(More)
Tau positron emission tomography ligands provide the novel possibility to image tau pathology in vivo However, little is known about how in vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with (18)F-AV-1451 in three patients harbouring a(More)
Major depressive disorder (MDD) is a serious public health burden and a leading cause of disability. Its pharmacotherapy is currently limited to modulators of monoamine neurotransmitters and second-generation antipsychotics. Recently, glutamatergic approaches for the treatment of MDD have increasingly received attention, and preclinical research suggests(More)