Learn More
Plasticity is a fundamental property of the neural system controlling breathing. One frequently studied model of respiratory plasticity is long-term facilitation of phrenic motor output (pLTF) following acute intermittent hypoxia (AIH). pLTF arises from spinal plasticity, increasing respiratory motor output through a mechanism that requires new synthesis of(More)
Spinal injury disrupts connections between the brain and spinal cord, causing life-long paralysis. Most spinal injuries are incomplete, leaving spared neural pathways to motor neurons that initiate and coordinate movement. One therapeutic strategy to induce functional motor recovery is to harness plasticity in these spared neural pathways. Chronic(More)
Phrenic long-term facilitation (pLTF) is a form of serotonin-dependent respiratory plasticity induced by acute intermittent hypoxia (AIH). pLTF requires spinal Gq protein-coupled serotonin-2 receptor (5-HT2) activation, new synthesis of brain-derived neurotrophic factor (BDNF) and activation of its high-affinity receptor, TrkB. Intrathecal injections of(More)
We present a systematic study on the recognition of 3D gestures using spatially convenient input devices. Specifically, we examine the linear acceleration-sensing Nintendo Wii Remote coupled with the angular velocity-sensing Nintendo Wii MotionPlus. For the study, we created a 3D gesture database, collecting data on 25 distinct gestures totalling 8500(More)
Ten mood variables were related to eight weather variables in a multidimensional study. Data were collected from 24 male subjects over 11 consecutive days. The mood variables were as follows: concentration, cooperation, anxiety, potency, aggression, depression, sleepiness, scepticism, control, and optimism. The weather variables included: hours of sunshine,(More)
Acute intermittent hypoxia elicits a form of spinal, brain-derived neurotrophic factor (BDNF)-dependent respiratory plasticity known as phrenic long-term facilitation. Ligands that activate G(s)-protein-coupled receptors, such as the adenosine 2a receptor, mimic the effects of neurotrophins in vitro by transactivating their high-affinity receptor tyrosine(More)
Plasticity is a hallmark of neural systems, including the neural system controlling breathing (Mitchell and Johnson 2003). Despite its biological and potential clinical significance, our understanding of mechanisms giving rise to any form of respiratory plasticity remains incomplete. Here we discuss recent advances in our understanding of cellular(More)
Acute intermittent hypoxia elicits a form of serotonin-dependent respiratory plasticity known as phrenic long term facilitation (pLTF). Episodic spinal serotonin-2 (5-HT2) receptor activation on or near phrenic motor neurons is necessary for pLTF. A hallmark of pLTF is the requirement for serotonin-dependent synthesis of brain-derived neurotrophic factor(More)
Phrenic long term facilitation (pLTF) is a form of respiratory plasticity induced by acute intermittent hypoxia. pLTF requires spinal serotonin receptor activation, new BDNF synthesis and TrkB receptor activation. Spinal adenosine 2A (A(2A)) receptor activation also elicits phrenic motor facilitation, but by a distinct mechanism involving new TrkB(More)