Michael Helmling

Learn More
—Mathematical programming is a branch of applied mathematics and has recently been used to derive new decoding approaches, challenging established but often heuristic algorithms based on iterative message passing. Concepts from mathematical programming used in the context of decoding include linear, integer, and nonlinear programming, network flows, notions(More)
—In this work, we consider pseudocodewords of (relaxed) linear programming (LP) decoding of 3-dimensional turbo codes (3D-TCs), recently introduced by Berrou et al.. Here, we consider binary 3D-TCs while the original work of Berrou et al. considered double-binary codes. We present a relaxed LP decoder for 3D-TCs, which is an adaptation of the relaxed LP(More)
—In this work, we consider efficient maximum-likelihood decoding of linear block codes for small-to-moderate block lengths. The presented approach is a branch-and-bound algorithm using the cutting-plane approach of Zhang and Siegel (IEEE Trans. Inf. Theory, 2012) for obtaining lower bounds. We have compared our proposed algorithm to the state-of-the-art(More)
—It has been shown that non-binary LDPC codes have a better error correction performance than binary codes for short block lengths. However, this advantage was up to now only shown under belief propagation decoding. To gain new insights, we investigate binary and non-binary codes under ML decoding. Our analysis includes different modulation schemes and(More)
—In this work, we consider pseudocodewords of (relaxed) linear programming (LP) decoding of 3-dimensional turbo codes (3D-TCs). We present a relaxed LP decoder for 3D-TCs, adapting the relaxed LP decoder for conventional turbo codes proposed by Feldman in his thesis. We show that the 3D-TC polytope is proper and C-symmetric, and make a connection to finite(More)