Michael Hanscho

Learn More
The human genome-scale metabolic reconstruction details all known metabolic reactions occurring in humans, and thereby holds substantial promise for studying complex diseases and phenotypes. Capturing the whole human metabolic reconstruction is an on-going task and since the last community effort generated a consensus reconstruction, several updates have(More)
The rational, in silico prediction of gene-knockouts to turn organisms into efficient cell factories is an essential and computationally challenging task in metabolic engineering. Elementary flux mode analysis in combination with constraint minimal cut sets is a particularly powerful method to identify optimal engineering targets, which will force an(More)
Despite the significant progress made in recent years, the computation of the complete set of elementary flux modes of large or even genome-scale metabolic networks is still impossible. We introduce a novel approach to speed up the calculation of elementary flux modes by including transcriptional regulatory information into the analysis of metabolic(More)
The most striking characteristic of CHO cells is their adaptability, which enables efficient production of proteins as well as growth under a variety of culture conditions, but also results in genomic and phenotypic instability. To investigate the relative contribution of genomic and epigenetic modifications towards phenotype evolution, comprehensive genome(More)
  • 1