Michael Grabe

Learn More
A precise pH gradient between organelles of the regulated secretory pathway is required for sorting and processing of prohormones. We studied pH regulation in live endocrine cells by targeting biotin-based pH indicators to cellular organelles expressing avidin-chimera proteins. In AtT-20 cells, we found that steady-state pH decreased from the endoplasmic(More)
Intracellular organelles have characteristic pH ranges that are set and maintained by a balance between ion pumps, leaks, and internal ionic equilibria. Previously, a thermodynamic study by Rybak et al. (Rybak, S., F. Lanni, and R. Murphy. 1997. Biophys. J. 73:674-687) identified the key elements involved in pH regulation; however, recent experiments show(More)
Voltage-gated potassium (Kv) channels, essential for regulating potassium uptake and cell volume in plants and electrical excitability in animals, switch between conducting and non-conducting states as a result of conformational changes in the four voltage-sensing domains (VSDs) that surround the channel pore. This process, known as gating, is initiated by(More)
The voltage-dependent anion channel (VDAC) is the major pathway mediating the transfer of metabolites and ions across the mitochondrial outer membrane. Two hallmarks of the channel in the open state are high metabolite flux and anion selectivity, while the partially closed state blocks metabolites and is cation selective. Here we report the results from(More)
Human body-surface epithelia coexist in close association with complex bacterial communities and are protected by a variety of antibacterial proteins. C-type lectins of the RegIII family are bactericidal proteins that limit direct contact between bacteria and the intestinal epithelium and thus promote tolerance to the intestinal microbiota. RegIII lectins(More)
Work addressing whether cystic fibrosis transmembrane conductance regulator (CFTR) plays a role in regulating organelle pH has remained inconclusive. We engineered a pH-sensitive excitation ratiometric green fluorescent protein (pHERP) and targeted it to the Golgi with sialyltransferase (ST). As determined by ratiometric imaging of cells expressing(More)
The vacuolar H(+)-ATPases (V-ATPases) are a universal class of proton pumps that are structurally similar to the F-ATPases. Both protein families are characterized by a membrane-bound segment (V(o), F(o)) responsible for the translocation of protons, and a soluble portion, (V(1), F(1)), which supplies the energy for translocation by hydrolyzing ATP. Here we(More)
Production and secretion of hormones by the pituitary involve highly orchestrated intracellular transport and sorting steps. Hormone precursors are routed through a series of compartments before being packaged in secretory granules. These highly dynamic carriers play crucial roles in both prohormone processing and peptide exocytosis. We have employed the(More)
The F-ATPase of the bacterium Propionigenium modestum is driven by an electrochemical sodium gradient between the cell interior and its environment. Here we present a mechanochemical model for the transduction of transmembrane sodium-motive force into rotary torque. The same mechanism is likely to operate in other F-ATPases, including the proton-driven(More)
Continuum electrostatic approaches have been extremely successful at describing the charged nature of soluble proteins and how they interact with binding partners. However, it is unclear whether continuum methods can be used to quantitatively understand the energetics of membrane protein insertion and stability. Recent translation experiments suggest that(More)