Michael Gleicher

Learn More
In this paper we present a novel method for creating realistic, controllable motion. Given a corpus of motion capture data, we automatically construct a directed graph called a <i>motion graph</i> that encapsulates connections among the database. The motion graph consists both of pieces of original motion and automatically generated transitions. Motion can(More)
We describe a technique that transforms a video from a hand-held video camera so that it appears as if it were taken with a directed camera motion. Our method adjusts the video to appear as if it were taken from nearby viewpoints, allowing 3D camera movements to be simulated. By aiming only for perceptual plausibility, rather than accurate reconstruction,(More)
Large motion data sets often contain many variants of the same kind of motion, but without appropriate tools it is difficult to fully exploit this fact. This paper provides automated methods for identifying logically similar motions in a data set and using them to build a continuous and intuitively parameterized space of motions. To find logically similar(More)
straints, motion capture. In this paper, we present a technique for motion: the problem of adapting an animated motion from one character to another. Our focus is on adapting the motion of one articulated figure to another figure with identical structure but different segment lengths, although we use this as a step when considering less similar characters.(More)
Many motion editing algorithms, including transitioning and multitarget interpolation, can be represented as instances of a more general operation called motion blending. We introduce a novel data structure called a registration curve that expands the class of motions that can be successfully blended without manual input. Registration curves achieve this by(More)
Good character animation requires convincing skin deformations including subtleties and details like muscle bulges. Such effects are typically created in commercial animation packages which provide very general and powerful tools. While these systems are convenient and flexible for artists, the generality often leads to characters that are slow to compute(More)
We present a robust and efficient approach to video stabilization that achieves high-quality camera motion for a wide range of videos. In this article, we focus on the problem of transforming a set of input 2D motion trajectories so that they are both smooth and resemble visually plausible views of the imaged scene; our key insight is that we can achieve(More)
While motion capture is commonplace in character animation, often the raw motion data itself is not used. Rather, it is first fit onto a skeleton and then edited to satisfy the particular demands of the animation. This process can introduce artifacts into the motion. One particularly distracting artifact is when the character's feet move when they ought to(More)
When a video is displayed on a smaller display than originally intended, some of the information in the video is necessarily lost. In this paper, we introduce <i>Video Retargeting</i> that adapts video to better suit the target display, minimizing the important information lost. We define a framework that measures the preservation of the source material,(More)
In this paper we introduce through-the-lens camera control, a body of techniques that permit a user to manipulate a virtual camera by controlling and constraining features in the image seen through its lens. Rather than solving for camera parameters directly, constrained optimization is used to compute their time derivatives based on desired changes in(More)