Michael G. Madden

Learn More
The Support Vector Machine (SVM) has emerged in recent years as a popular approach to the classification of data. One problem that faces the user of an SVM is how to choose a kernel and the specific parameters for that kernel. Applications of an SVM therefore require a search for the optimum settings for a particular problem. This paper proposes a(More)
This paper investigates the use of machine learning classification techniques applied to the task of recognising the make and model of vehicles. Although a number of vehicle classification systems already exist, most of them seek only to distinguish between vehicle categories, e.g. identifying whether a vehicle is a bus, truck or car. The system presented(More)
This paper outlines a system for detection of cardiac arrhythmias within ECG signals, based on a Bayesian Artificial Neural Network (ANN) classifier. The Bayesian (or Probabilistic) ANN Classifier is built by the use of a logistic regression model and the back propagation algorithm based on a Bayesian framework. Its performance for this task is evaluated by(More)
The Markov Blanket Bayesian Classifier is a recentlyproposed algorithm for construction of probabilistic classifiers. This paper presents an empirical comparison of the MBBC algorithm with three other Bayesian classifiers: Naïve Bayes, Tree-Augmented Naïve Bayes and a general Bayesian network. All of these are implemented using the K2 framework of Cooper(More)
One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many(More)
Over a decade ago, Friedman et al. introduced the Tree Augmented Naïve Bayes (TAN) classifier, with experiments indicating that it significantly outperformed Naïve Bayes (NB) in terms of classification accuracy, whereas general Bayesian network (GBN) classifiers performed no better than NB. This paper challenges those claims, using a careful experimental(More)
The aim of this study is to evaluate the effectiveness of using external indicators, such as commodity prices and currency exchange rates, in predicting movements in the Dow Jones Industrial Average index. The performance of each technique is evaluated using different domain specific metrics. A comprehensive evaluation procedure is described, involving the(More)
This paper introduces a new Bayesian network structure, named a Partial Bayesian Network (PBN), and describes an algorithm for constructing it. The PBN is designed to be used for classification tasks, and accordingly the algorithm constructs an approximate Markov blanket around a classification node. Initial experiments have compared the performance of the(More)
The Java Programming Language is now very well established and is frequently the first Object-Oriented Language that is taught to students. This paper discusses the results of a wide-ranging survey conducted by the authors to help identify aspects of the language that students perceive to be most difficult. It also reports on the teaching methods and other(More)