Michael G. Heinz

Learn More
A phenomenological model was developed to describe responses of high-spontaneous-rate auditory-nerve (AN) fibers, including several nonlinear response properties. Level-dependent gain (compression), bandwidth, and phase properties were implemented with a control path that varied the gain and bandwidth of tuning in the signal-path filter. By making the(More)
People with sensorineural hearing loss are often constrained by a reduced acoustic dynamic range associated with loudness recruitment; however, the neural correlates of loudness and recruitment are still not well understood. The growth of auditory-nerve (AN) activity with sound level was compared in normal-hearing cats and in cats with a noise-induced(More)
Any sound can be separated mathematically into a slowly varying envelope and rapidly varying fine-structure component. This property has motivated numerous perceptual studies to understand the relative importance of each component for speech and music perception. Specialized acoustic stimuli, such as auditory chimaeras with the envelope of one sound and(More)
The perceptual significance of the cochlear amplifier was evaluated by predicting level-discrimination performance based on stochastic auditory-nerve (AN) activity. Performance was calculated for three models of processing: the optimal all-information processor (based on discharge times), the optimal rate-place processor (based on discharge counts), and a(More)
Human listeners prefer consonant over dissonant musical intervals and the perceived contrast between these classes is reduced with cochlear hearing loss. Population-level activity of normal and impaired model auditory-nerve (AN) fibers was examined to determine (1) if peripheral auditory neurons exhibit correlates of consonance and dissonance and (2) if the(More)
A number of perceptual phenomena related to normal and impaired level coding can be accounted for by the degree of compression in the basilar-membrane (BM) magnitude response. However, the narrow dynamic ranges of auditory-nerve (AN) fibers complicate these arguments. Because the AN serves as an information bottleneck, an improved understanding of the(More)
Recent perceptual studies suggest that listeners with sensorineural hearing loss (SNHL) have a reduced ability to use temporal fine-structure cues, whereas the effects of SNHL on temporal envelope cues are generally thought to be minimal. Several perceptual studies suggest that envelope coding may actually be enhanced following SNHL and that this effect may(More)
An analytical approach for quantifying the information in auditory-nerve (AN) fiber responses for the task of level discrimination is described. A simple analytical model for AN responses is extended to include temporal response properties, including the nonlinear-phase effects of the cochlear amplifier. Use of simple analytical models for AN discharge(More)
Behavioral studies in humans suggest that sensorineural hearing loss (SNHL) decreases sensitivity to the temporal structure of sound, but neurophysiological studies in mammals provide little evidence for diminished temporal coding. We found that SNHL in chinchillas degraded peripheral temporal coding in background noise substantially more than in quiet.(More)
A method for calculating psychophysical performance limits based on stochastic neural responses is introduced and compared to previous analytical methods for evaluating auditory discrimination of tone frequency and level. The method uses signal detection theory and a computational model for a population of auditory nerve (AN) fiber responses. The use of(More)