Sanjeev Rajakulendran10
Jasper M. Morrow8
Linda Greensmith8
10Sanjeev Rajakulendran
8Jasper M. Morrow
8Linda Greensmith
Learn More
The molecular basis of idiopathic generalized epilepsy remains poorly understood. Absence epilepsy with 3 Hz spike-wave EEG is one of the most common human epilepsies, and is associated with significant morbidity. Several spontaneously occurring genetic mouse models of absence epilepsy are caused by dysfunction of the P/Q-type voltage-gated calcium channel(More)
Premature stop codons in CACNA1A, which encodes the alpha(1A) subunit of neuronal P/Q-type (Ca(V)2.1) Ca(2+) channels, cause episodic ataxia type 2 (EA2). CACNA1A undergoes extensive alternative splicing, which contributes to the pharmacological and kinetic heterogeneity of Ca(V)2.1-mediated Ca(2+) currents. We identified three novel heterozygous stop codon(More)
The past two decades have witnessed the emergence of a new and expanding field of neurological diseases--the genetic ion channelopathies. These disorders arise from mutations in genes that encode ion channel subunits, and manifest as paroxysmal attacks involving the brain or spinal cord, and/or muscle. The voltage-gated P/Q-type calcium channel (P/Q(More)
Spinal and bulbar muscular atrophy (SBMA), or Kennedy's disease, is a late-onset motor neuron disease (MND) caused by an abnormal expansion of the CAG repeat in the androgen receptor (AR) gene on the X-chromosome, encoding a polyglutamine (poly-Q) sequence in the protein product. Mutant poly-Q-expanded AR protein is widely expressed but leads to selective(More)
Several neurological diseases-including neuromuscular disorders, movement disorders, migraine, and epilepsy-are caused by inherited mutations of ion channels. The list of these "channelopathies" is expanding rapidly, as is the phenotypic range associated with each channel. At present the best understood channelopathies are those that affect muscle-fibre(More)
Clinical neurophysiology has become an invaluable tool in the diagnosis of muscle channelopathies, but the situation is less clear cut with neuronal channelopathies. The genetic episodic ataxias are a group of disorders with heterogeneous phenotype and genotype, but share in common the feature of intermittent cerebellar dysfunction. Episodic ataxia (EA)(More)
Episodic ataxia type 1 is a neuronal channelopathy caused by mutations in the KCNA1 gene encoding the fast K(+) channel subunit K(v)1.1. Episodic ataxia type 1 presents with brief episodes of cerebellar dysfunction and persistent neuromyotonia and is associated with an increased incidence of epilepsy. In myelinated peripheral nerve, K(v)1.1 is highly(More)
  • Tracey A. Willis, Kieren G. Hollingsworth, Anna Coombs, Marie-Louise Sveen, Søren Andersen, Tanya Stojkovic +14 others
  • 2013
BACKGROUND Outcome measures for clinical trials in neuromuscular diseases are typically based on physical assessments which are dependent on patient effort, combine the effort of different muscle groups, and may not be sensitive to progression over short trial periods in slow-progressing diseases. We hypothesised that quantitative fat imaging by MRI (Dixon(More)
Mutations in the nuclear-encoded mitochondrial maintenance gene RRM2B are an important cause of familial mitochondrial disease in both adults and children and represent the third most common cause of multiple mitochondrial DNA deletions in adults, following POLG [polymerase (DNA directed), gamma] and PEO1 (now called C10ORF2, encoding the Twinkle helicase)(More)