Learn More
The glaucomas are neurodegenerative diseases involving death of retinal ganglion cells and optic nerve head excavation. A major risk factor for this neurodegeneration is a harmfully elevated intraocular pressure (IOP). Human glaucomas are typically complex, progressive diseases that are prevalent in the elderly. Family history and genetic factors are(More)
The glaucomas are a common but incompletely understood group of diseases. DBA/2J mice develop a pigment liberating iris disease that ultimately causes elevated intraocular pressure (IOP) and glaucoma. We have shown previously that mutations in two genes, Gpnmb and Tyrp1, initiate the iris disease. However, mechanisms involved in the subsequent IOP elevation(More)
Glaucomas are a major cause of blindness. Visual loss typically involves retinal ganglion cell death and optic nerve atrophy subsequent to a pathologic elevation of intraocular pressure (IOP). Some human glaucomas are associated with anterior segment abnormalities such as pigment dispersion syndrome (PDS) and iris atrophy with associated synechiae. The(More)
Here, we show that high-dose gamma-irradiation accompanied with syngeneic bone marrow transfer can confer complete protection against glaucoma in a mouse model. Because bone marrow genotype was unaltered by this procedure, it was not the causative agent. The neuroprotection is robust and highly reproducible. Glaucoma-prone DBA/2J mice received a single(More)
Coordination of rhythmic locomotion depends upon a precisely balanced interplay between central and peripheral control mechanisms. Although poorly understood, peripheral proprioceptive mechanosensory input is thought to provide information about body position for moment-to-moment modifications of central mechanisms mediating rhythmic motor output.(More)
The 3D imaging of the middle ear facilitates better understanding of the patient's anatomy. Cross-sectional slices, however, often allow a more accurate evaluation of anatomical structures, as some detail may be lost through post-processing. In order to demonstrate the advantages of combining both approaches, we performed computed tomography (CT) imaging in(More)
Pigmentary glaucoma is a significant cause of human blindness. Abnormally liberated iris pigment and cell debris enter the ocular drainage structures, leading to increased intraocular pressure (IOP) and glaucoma. DBA/2J (D2) mice develop a form of pigmentary glaucoma involving iris pigment dispersion (IPD) and iris stromal atrophy (ISA). Using(More)
Nucleotide sequence analyses of the env genes of two neurotropic variants of SIVmac239 were performed to determine whether molecular changes in these genes could be correlated with neurotropism. Biological characterization of virus from the infectious molecular clone of SIVmac239 had shown that it is highly lymphocyte-tropic and poorly macrophage-tropic.(More)
Neurological disease resulting from lentivirus (including human immunodeficiency virus) infections is usually caused by a strain of virus that replicates productively in microglia in vivo and in macrophage cultures in vitro. We undertook this study using the model of simian immunodeficiency virus in macaques (SIVmac) to test the hypothesis that macrophage(More)
PURPOSE Human eyes with exfoliation syndrome (XFS) exhibit a distinctive pattern of iris transillumination defects that are recapitulated in Lyst mutant mice carrying the beige allele. The purpose of this study was to determine the anatomic basis for Lyst-mediated transillumination defects, test whether Lyst mutant mice develop other features of XFS, and(More)