Learn More
Wikidata is the central data management platform of Wikipedia. By the efforts of thousands of volunteers, the project has produced a large, open knowledge base with many interesting applications. The data is highly interlinked and connected to many other datasets, but it is also very rich, complex, and not available in RDF. To address this issue, we(More)
The mechanical requirements for arboreal life are reviewed and the constraints which these requirements impose on the body of a prosimian are defined. The mechanical necessities can be fulfilled only by animals which possess the appropriate morphological characters. It is incorrect to refer to these morphological traits directly as 'adaptations'. Instead(More)
Size and proportions of the postcranial skeleton differ markedly between Australopithecus afarensis and Homo ergaster, and between the latter and modern Homo sapiens. This study uses computer simulations of gait in models derived from the best-known skeletons of these species (AL 288-1, Australopithecus afarensis, 3.18 million year ago) and KNM-WT 15000(More)
Body size has a dominant influence on locomotor performance and the morphology of the locomotor apparatus. In locomotion under the influence of gravity, body mass acts as weight force and is a mechanical variable. Accordingly, the application of biomechanical principles and methods allows a functional understanding of scaling effects in locomotion. This is(More)
The jump is always used for locomotion. For its execution in arboreal and terrestrial biotopes the requirements are of somewhat different nature. In an arboreal biotope the jump is characterized by a rapid progression through discontinuous substrates and the ability to take off from a small area and a secure landing on a spot. This requires well coordinated(More)
The plantar aponeurosis (PA), in spanning the whole length of the plantar aspect of the foot, is clearly identified as one of the key structures that is likely to affect compliance and stability of the longitudinal arch. A recent study performed in our laboratory showed that tension/elongation in the PA can be predicted from the kinematics of the segments(More)
Gibbons utilize a number of locomotor modes in the wild, including bipedalism, leaping and, most of all, brachiation. Each locomotor mode puts specific constraints on the morphology of the animal; in some cases these may be complementary, whereas in others they may conflict. Despite several studies of the locomotor biomechanics of gibbons, very little is(More)
The distance that animals leap depends on their take-off angle and velocity. The velocity is generated solely by mechanical work during the push-off phase of standing-start leaps. Gibbons are capable of exceptional leaping performance, crossing gaps in the forest canopy exceeding 10 m, yet possess none of the adaptations possessed by specialist leapers(More)
The storage and recovery of elastic strain energy in the musculoskeletal systems of locomoting animals has been extensively studied, yet the external environment represents a second potentially useful energy store that has often been neglected. Recent studies have highlighted the ability of orangutans to usefully recover energy from swaying trees to(More)
Muscles facilitate skeletal movement via the production of a torque or moment about a joint. The magnitude of the moment produced depends on both the force of muscular contraction and the size of the moment arm used to rotate the joint. Hence, larger muscle moment arms generate larger joint torques and forces at the point of application. The moment arms of(More)