Learn More
The adjustment of the leg during running was addressed using a spring-mass model with a fixed landing angle of attack. The objective was to obtain periodic movement patterns. Spring-like running was monitored by a one-dimensional stride-to-stride mapping of the apex height to identify mechanically stable fixed points. We found that for certain angles of(More)
Human running is characterized by comparably simple whole-body dynamics. These dynamics can be modelled with a point mass bouncing on a spring leg. Theoretical studies using such spring-mass models predict that running can be self-stable. In simulations, this self-stability allows for running on uneven ground without paying attention to the ground(More)
The human musculo-skeletal system comprises high complexity which makes it difficult to identify underlying basic principles of bipedal locomotion. To tackle this challenge, a common approach is to strip away complexity and formulate a reductive model. With utter simplicity a bipedal spring-mass model gives good predictions of the human gait dynamics,(More)
Hill-type muscle models are commonly used in biomechanical simulations to predict passive and active muscle forces. Here, a model is presented which consists of four elements: a contractile element with force-length and force-velocity relations for concentric and eccentric contractions, a parallel elastic element, a series elastic element, and a serial(More)
CO(2) is frequently used in an experimental pain model and in imaging studies investigating the central processing of trigeminal nociceptive information because of its specific trigeminal stimulation properties. The aim of the current study was (1) to investigate the sensitivity of the NMP to small increments of CO(2) stimulus concentrations (3% CO(2), v/v)(More)
In this study, we derive the hyperbolic force-velocity relation of concentric muscular contraction, first formulated empirically by A.V. Hill in 1938, from three essential model assumptions: (1) the structural assembly of three well-known elements - i.e. active, parallel damping, and serial - fulfilling a force equilibrium, (2) the parallel damping(More)
The spring-mass model is a valid fundament to understand global dynamics of fast legged locomotion under gravity. The underlying concept of elasticity, implying leg stiffness as a crucial parameter, is also found on lower motor control levels, i.e. in muscle-reflex and muscle-tendon systems. Therefore, it seems reasonable that global leg stiffness emerges(More)
Quasi-elastic operation of joints in multi-segmented systems as they occur in the legs of humans, animals, and robots requires a careful tuning of leg properties and geometry if catastrophic counteracting operation of the joints is to be avoided. A simple three-segment model has been used to investigate the segmental organization of the leg during repulsive(More)
Training measures to improve neuromuscular coordination are becoming ever more popular for both prevention and rehabilitation, not only in athletes but also patients receiving joint replacements. Numerous proprioceptive training measures and devices are used to train the sense of balance. Parameters suitable for quantifying the results of therapy are(More)
According to the state of the art model (single inverted pendulum) the regulation of quiet human stance seems to be dominated by ankle joint actions. Recent findings substantiated both in-phase and anti-phase fluctuations of ankle and hip joint kinematics can be identified in quiet human stance. Thus, we explored in an experimental study to what extent all(More)