Learn More
The effects of diffuse brain injury on dendritic morphology in rat hippocampus and cortex were examined in this study using the recently described impact acceleration model of traumatic brain injury (Marmarou et al., 1994). Dendritic structure was visualized using immunostaining of microtubule associated protein-2 (MAP-2). Brains were studied 24, 48, and 72(More)
PURPOSE To evaluate an algorithm for real-time 3D tumor localization from a single x-ray projection image for lung cancer radiotherapy. METHODS Recently, we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection [Li et al., Med. Phys. 37, 2822-2826 (2010)]. We have(More)
Male Sprague-Dawley rats were used to study the possible role of hyperthermia in the thirst associated with thermal dehydration. Rats were exposed to 40 degrees C for 4 h and then allowed access to water at different times after they were transferred to 25 degrees C. Delaying the time prior to allowing the rats to drink did not significantly alter either(More)
The behavioral and histological effects of the lateral fluid percussion (LFP) brain injury model were compared with the weight drop impact-acceleration model with 10 min of secondary hypoxia (WDIA + H). LFP injury resulted in significant motor deficits on the beam walk and inclined plane, and memory deficits on the radial arm maze and Morris water maze.(More)
Traumatic brain injury (TBI) can dramatically increase levels of intracellular calcium ([Ca(2+)](i)). One consequence of increased [Ca(2+)](i) would be altered activity and function of calcium-regulated proteins, including calcium-calmodulin-dependent protein kinase II (CaMKII), which is autophosphorylated on Thr(286)(pCaMKII(286)) in the presence of(More)
Monte Carlo (MC) simulation is commonly considered to be the most accurate dose calculation method in radiotherapy. However, its efficiency still requires improvement for many routine clinical applications. In this paper, we present our recent progress toward the development of a graphics processing unit (GPU)-based MC dose calculation package, gDPM v2.0.(More)
PURPOSE To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. METHODS Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other(More)
Impairments in learning and memory occur in as many as 50% of patients following traumatic brain injury (TBI). Similar impairments occur in rodent models of TBI, and the development of new memory testing procedures provides an opportunity to examine how TBI affects memory processing in specific neural memory systems. Specifically, metric, topological, and(More)
We have developed an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image. We first parameterize the deformation vector fields (DVF) of lung motion by principal component analysis (PCA). Then we optimize the DVF applied to a reference image by adapting the PCA coefficients such that the(More)
PURPOSE To develop a user friendly web application for a GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) tool which runs in modern web browsers and interacts remotely with specialized hardware/software resources. METHODS We developed a new QA web application based on existing technologies (HTML5, Python, and Django) to interface with a(More)