Michael Flagella

Learn More
Inhibition of the kinase activity of leucine-rich repeat kinase 2 (LRRK2) is under investigation as a possible treatment for Parkinson's disease. However, there is no clinical validation as yet, and the safety implications of targeting LRRK2 kinase activity are not well understood. We evaluated the potential safety risks by comparing human and mouse LRRK2(More)
The mechanisms of resistance to the antimetabolite gemcitabine in non-small cell lung cancer have not been extensively evaluated. In this study, we report the generation of two gemcitabine-selected non-small cell lung cancer cell lines, H358-G200 and H460-G400. Expression profiling results indicated that there was evidence for changes in the expression of(More)
We reported previously that inhibition of Na(+)-K(+)-Cl(-) cotransporter isoform 1 (NKCC1) by bumetanide abolishes high extracellular K(+) concentration ([K(+)](o))-induced swelling and intracellular Cl(-) accumulation in rat cortical astrocytes. In this report, we extended our study by using cortical astrocytes from NKCC1-deficient (NKCC1(-/-)) mice. NKCC1(More)
Checkpoint kinase 1 (ChK1) is a serine/threonine kinase that functions as a central mediator of the intra-S and G2-M cell-cycle checkpoints. Following DNA damage or replication stress, ChK1-mediated phosphorylation of downstream effectors delays cell-cycle progression so that the damaged genome can be repaired. As a therapeutic strategy, inhibition of ChK1(More)
BACKGROUND & AIMS Adenosine 3',5'-cyclic monophosphate (cAMP)-stimulated anion secretion across the duodenal epithelium requires the cystic fibrosis transmembrane conductance regulator (CFTR) in the apical membrane and anion uptake proteins in the basolateral membrane. NKCC1, the epithelial Na(+)/K(+)/2Cl(-) cotransporter, is the major protein responsible(More)
Checkpoint kinase 1 (ChK1) plays a key role in the DNA damage response, facilitating cell-cycle arrest to provide sufficient time for lesion repair. This leads to the hypothesis that inhibition of ChK1 might enhance the effectiveness of DNA-damaging therapies in the treatment of cancer. Lead compound 1 (GNE-783), the prototype of the 1,7-diazacarbazole(More)
The basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) functions in the maintenance of cellular electrolyte and volume homeostasis. NKCC1-deficient (Nkcc1(-/-)) mice were used to examine its role in cardiac function and in the maintenance of blood pressure and vascular tone. Tail-cuff measurements demonstrated that awake Nkcc1(-/-) mice had significantly(More)
Ion transporters play a central role in gastric acid secretion. To determine whether some of these transporters are necessary for the normal ultrastructure of secretory membranes in gastric parietal cells, mice lacking transporters for H+, K+, Cl–, and Na+ were examined for alterations in volume density (Vd) of basolateral, apical, tubulovesicular and(More)
Despite the fact that physiological evidence points to the existence of a functional Na-K-Cl cotransporter in the mammary gland, the molecular identity of this transport process remains unknown. We now show that the Na-K-Cl cotransporter isoform, NKCC1, is expressed in mammary tissue. Developmental profiling revealed that the level of NKCC1 protein was(More)
We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of(More)