Learn More
Single canine cardiac ryanodine receptor channels were incorporated into planar lipid bilayers. Single-channel currents were sampled at 1-5 kHz and filtered at 0.2-1.0 kHz. Channel incorporations were obtained in symmetrical solutions (20 mM HEPES-Tris, pH 7.4, and pCa 5). Unitary Ca2+ currents were monitored when 2-30 mM Ca2+ was added to the lumenal side(More)
The ryanodine receptors (RyRs) are a family of Ca2+ release channels found on intracellular Ca2+ storage/release organelles. The RyR channels are ubiquitously expressed in many types of cells and participate in a variety of important Ca2+ signaling phenomena (neurotransmission, secretion, etc.). In striated muscle, the RyR channels represent the primary(More)
We describe a high temporal resolution confocal spot microfluorimetry setup which makes possible the detection of fluorescence transients elicited by Ca2+ indicators in response to large (50-200 microM), short duration (< 100 ns), free [Ca2+] transients generated by laser flash photolysis of DM-nitrophen (DM-n; caged Ca2+). The equilibrium and kinetic(More)
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS-solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we(More)
Adaptation of single cardiac ryanodine receptor (RyR) channels was demonstrated by application of the caged calcium ion (Ca2+) methodology. In contrast to conventional desensitization found in surface membrane ligand-gated channels, single cardiac RyR channels adapted to maintained Ca2+ stimuli, preserving their ability to respond to a second (larger) Ca2+(More)
Ryanodine receptor (RyR) channels from mammalian cardiac and amphibian skeletal muscle were incorporated into planar lipid bilayers. Unitary Ca2+ currents in the SR lumen-to-cytosol direction were recorded at 0 mV in the presence of caffeine (to minimize gating fluctuations). Currents measured with 20 mM lumenal Ca2+ as exclusive charge carrier were 4.00(More)
The inositol 1,4,5-trisphosphate receptor (InsP3R) family of Ca2+ release channels is central to intracellular Ca2+ signaling in mammalian cells. The InsP3R channels release Ca2+ from intracellular compartments to generate localized Ca2+ transients that govern a myriad of cellular signaling phenomena (Berridge, 1993. Nature. 361:315-325; Joseph, 1996. Cell(More)
Single ryanodine-sensitive sarcoplasmic reticulum (SR) Ca2+ release channels isolated from rabbit skeletal and canine cardiac muscle were reconstituted in planar lipid bilayers. Single channel activity was measured in simple solutions (no ATP or Mg2+) with 250 mM symmetrical Cs+ as charge carrier. A laser flash was used to photolyze caged-Ca2+(More)
Intracellular calcium release channels like ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP(3)Rs) mediate large Ca(2+) release events from Ca(2+) storage organelles lasting >5 ms. To have such long-lasting Ca(2+) efflux, a countercurrent of other ions is necessary to prevent the membrane potential from becoming the Ca(2+) Nernst(More)
The luminal Ca2+ regulation of cardiac ryanodine receptor (RyR2) was explored at the single channel level. The luminal Ca2+ and Mg2+ sensitivity of single CSQ2-stripped and CSQ2-associated RyR2 channels was defined. Action of wild-type CSQ2 and of two mutant CSQ2s (R33Q and L167H) was also compared. Two luminal Ca2+ regulatory mechanism(s) were identified.(More)