Learn More
The ryanodine receptors (RyRs) are a family of Ca2+ release channels found on intracellular Ca2+ storage/release organelles. The RyR channels are ubiquitously expressed in many types of cells and participate in a variety of important Ca2+ signaling phenomena (neurotransmission, secretion, etc.). In striated muscle, the RyR channels represent the primary(More)
abstract Single canine cardiac ryanodine receptor channels were incorporated into planar lipid bilayers. Single channel currents were sampled at 1–5 kHz and filtered at 0.2–1.0 kHz. Channel incorporations were obtained in symmetrical solutions (20 mM HEPES-Tris, pH 7.4, and pCa 5). Unitary Ca 2 ϩ currents were monitored when 2–30 mM Ca 2 ϩ was added to the(More)
We describe a high temporal resolution confocal spot microfluorimetry setup which makes possible the detection of fluorescence transients elicited by Ca2+ indicators in response to large (50-200 microM), short duration (< 100 ns), free [Ca2+] transients generated by laser flash photolysis of DM-nitrophen (DM-n; caged Ca2+). The equilibrium and kinetic(More)
Adaptation of single cardiac ryanodine receptor (RyR) channels was demonstrated by application of the caged calcium ion (Ca2+) methodology. In contrast to conventional desensitization found in surface membrane ligand-gated channels, single cardiac RyR channels adapted to maintained Ca2+ stimuli, preserving their ability to respond to a second (larger) Ca2+(More)
Ryanodine receptor (RyR) channels from mammalian cardiac and amphibian skeletal muscle were incorporated into planar lipid bilayers. Unitary Ca2+ currents in the SR lumen-to-cytosol direction were recorded at 0 mV in the presence of caffeine (to minimize gating fluctuations). Currents measured with 20 mM lumenal Ca2+ as exclusive charge carrier were 4.00(More)
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS-solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we(More)
The inositol 1,4,5-trisphosphate receptor (InsP3R) family of Ca2+ release channels is central to intracellular Ca2+ signaling in mammalian cells. The InsP3R channels release Ca2+ from intracellular compartments to generate localized Ca2+ transients that govern a myriad of cellular signaling phenomena (Berridge, 1993. Nature. 361:315-325; Joseph, 1996. Cell(More)
In this study we describe the expression and function of the two rat type-1 inositol 1,4,5-trisphosphate receptor (InsP3R) ligand binding domain splice variants (SI+/-/SII+). Receptor protein from COS-1 cells transfected with the type-1 InsP3R expression plasmids (pInsP3R-T1, pInsP3R-T1ALT) or control DNA were incorporated into planar lipid bilayers and the(More)
Single ryanodine-sensitive sarcoplasmic reticulum (SR) Ca2+ release channels isolated from rabbit skeletal and canine cardiac muscle were reconstituted in planar lipid bilayers. Single channel activity was measured in simple solutions (no ATP or Mg2+) with 250 mM symmetrical Cs+ as charge carrier. A laser flash was used to photolyze caged-Ca2+(More)
The inositol 1,4,5-trisphosphate receptor (InsP3R) is an intracellular Ca2+ release channel that mediates the rise in cytoplasmic calcium in response to receptor-activated production of InsP3. The InsP3R-mediated signaling pathway appears to be ubiquitous and is involved in many cellular processes including cell division, smooth muscle contraction, and(More)