Michael F. Toney

Learn More
Morphological characterization has been used to explain the previously observed strong correlation between charge carrier mobility measured with thin-film transistors and the number-average molecular weight (MW) of the conjugated polymer regioregular poly(3-hexylthiophene). Atomic force microscopy and X-ray diffraction show that the low-mobility, low-MW(More)
The self-assembly of nanocrystals enables new classes of materials whose properties are controlled by the periodicities of the assembly, as well as by the size, shape, and composition of the nanocrystals. While self-assembly of spherical nanoparticles has advanced significantly in the past decade, assembly of rod-shaped nanocrystals has seen limited(More)
We compare the solar cell performance of several polymers with the conventional electron acceptor phenyl-C61-butyric acid methyl ester (PCBM) to fullerenes with one to three indene adducts. We find that the multiadduct fullerenes with lower electron affinity improve the efficiency of the solar cells only when they do not intercalate between the polymer side(More)
The conclusions reached by a diverse group of scientists who attended an intense 2-day workshop on hybrid organic-inorganic perovskites are presented, including their thoughts on the most burning fundamental and practical questions regarding this unique class of materials, and their suggestions on various approaches to resolve these issues.
We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal(More)