Michael F . Rubner

Learn More
Nanostructured polyelectrolyte multilayer thin films electrostatically assembled alternately from such polymers as poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) were investigated for their in vitro cell interactions. Not surprisingly, NR6WT cells, a highly adhesive murine fibroblast cell line, attached to many different multilayer(More)
Using a combination of an aqueous layer-by-layer deposition technique, nanoparticle surface modification chemistry, and nanoreactor chemistry, we constructed thin film coatings with two distinct layered functional regions: a reservoir for the loading and release of bactericidal chemicals and a nanoparticle surface cap with immobilized bactericides. This(More)
Cellular "backpacks" are a new type of anisotropic, nanoscale thickness microparticle that may be attached to the surface of living cells creating a "bio-hybrid" material. Previous work has shown that these backpacks do not impair cell viability or native functions such as migration in a B and T cell line, respectively. In the current work, we show that(More)
A newly discovered class of cell resistant surfaces, specifically engineered polyelectrolyte multilayers, was patterned with varying densities of adhesion ligands to control attachment of mammalian cells and to study the effects of ligand density on cell activity. Cell adhesive patterns were created on cell resistant multilayer films composed of(More)
It is well known that mechanical stimuli induce cellular responses ranging from morphological reorganization to mineral secretion, and that mechanical stimulation through modulation of the mechanical properties of cell substrata affects cell function in vitro and in vivo. However, there are few approaches by which the mechanical compliance of the substrata(More)
We demonstrate a layer-by-layer processing scheme that can be utilized to create transparent superhydrophobic films from SiO2 nanoparticles of various sizes. By controlling the placement and level of aggregation of differently sized nanoparticles within the resultant multilayer thin film, it is possible to optimize the level of surface roughness to achieve(More)
The competing mechanisms that regulate adhesion of bacteria to surfaces and subsequent biofilm formation remain unclear, though nearly all studies have focused on the role of physical and chemical properties of the material surface. Given the large monetary and health costs of medical-device colonization and hospital-acquired infections due to bacteria,(More)
We demonstrate that functional polyelectrolyte multilayer (PEM) patches can be attached to a fraction of the surface area of living, individual lymphocytes. Surface-modified cells remain viable at least 48 h following attachment of the functional patch, and patches carrying magnetic nanoparticles allow the cells to be spatially manipulated using a magnetic(More)
Antibacterial coatings based on hydrogen-bonded multilayers containing in situ synthesized Ag nanoparticles were created on planar surfaces and on magnetic colloidal particles. We report the antibacterial properties of these coatings, determined using a disk-diffusion (Kirby-Bauer) test, as a function of the film thickness and the concentration of Ag(More)
Cationic contact-killing is an important strategy for creating antimicrobial surfaces that prevent viable bacteria attachment. Recent studies have shown that highly swollen, compliant surfaces resist bacterial attachment and a sufficient density of mobile cationic charge can effectively disrupt bacterial cell membranes. Polyelectrolyte multilayers (PEMs), a(More)