Michael F. Jarvis

Learn More
P2X3 and P2X2/3 receptors are highly localized on peripheral and central processes of sensory afferent nerves, and activation of these channels contributes to the pronociceptive effects of ATP. A-317491 is a novel non-nucleotide antagonist of P2X3 and P2X2/3 receptor activation. A-317491 potently blocked recombinant human and rat P2X3 and P2X2/3(More)
ATP functions as a fast neurotransmitter through the specific activation of a family of ligand-gated ion channels termed P2X receptors. In this report, six distinct recombinant P2X receptor subtypes were pharmacologically characterized in a heterologous expression system devoid of endogenous P2 receptor activity. cDNAs encoding four human P2X receptor(More)
1-Benzyl-5-aryltetrazoles were discovered to be novel antagonists for the P2X(7) receptor. Structure-activity relationship (SAR) studies were conducted around both the benzyl and phenyl moieties. In addition, the importance of the regiochemical substitution on the tetrazole was examined. Compounds were evaluated for activity to inhibit calcium flux in both(More)
Growing evidence supports a role for the immune system in the induction and maintenance of chronic pain. ATP is a key neurotransmitter in this process. Recent studies demonstrate that the glial ATP receptor, P2X7, contributes to the modulation of pathological pain. To further delineate the endogenous mechanisms that are involved in P2X7-related(More)
We have recently reported that systemic delivery of A-317491, the first non-nucleotide antagonist that has high affinity and selectivity for blocking P2X3 homomeric and P2X2/3 heteromeric channels, is antinociceptive in rat models of chronic inflammatory and neuropathic pain. In an effort to further evaluate the role of P2X3/P2X2/3 receptors in nociceptive(More)
Activation of tetrodotoxin-resistant sodium channels contributes to action potential electrogenesis in neurons. Antisense oligonucleotide studies directed against Na(v)1.8 have shown that this channel contributes to experimental inflammatory and neuropathic pain. We report here the discovery of A-803467, a sodium channel blocker that potently blocks(More)
ATP-sensitive P2X(7) receptors are localized on cells of immunological origin including glial cells in the central nervous system. Activation of P2X(7) receptors leads to rapid changes in intracellular calcium concentrations, release of the proinflammatory cytokine interleukin-1beta (IL-1beta), and following prolonged agonist exposure, cytolytic plasma(More)
ATP-sensitive P2X(7) receptors are localized on cells of immunological origin including peripheral macrophages and glial cells in the CNS. Activation of P2X(7) receptors leads to rapid changes in intracellular calcium concentrations, release of the proinflammatory cytokine interleukin-1beta and following prolonged agonist exposure, the formation of(More)
P2X receptors are ATP-gated cation channels with important roles in diverse pathophysiological processes. Substantial progress has been made in the last few years with the discovery of both subunit selective antagonists and modulators. The purpose of this brief review is to summarize the advances in the pharmacology of P2X receptors, with key properties(More)