Michael F Jackson

Learn More
The principal inhibitory neurotransmitter in the mammalian brain, gamma-aminobutyric acid (GABA), is thought to regulate memory processes by activating transient inhibitory postsynaptic currents. Here we describe a nonsynaptic, tonic form of inhibition in mouse CA1 pyramidal neurons that is generated by a distinct subpopulation of GABA type A receptors(More)
gamma-Aminobutyric acid (GABA), the principal inhibitory neurotransmitter, activates a persistent low amplitude tonic current in several brain regions in addition to conventional synaptic currents. Here we demonstrate that GABA(A) receptors mediating the tonic current in hippocampal neurons exhibit functional and pharmacological properties different from(More)
*Institute of Medical Science, Departments of †Anesthesia, §Physiology, and Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada M5S 1A8; ¶Merck Sharp & Dohme Research Laboratories, Neuroscience Research Center, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; ‡Department of Pharmacology and Neuroscience, Ninewells Medical School,(More)
Pannexin-1 (Px1) is expressed at postsynaptic sites in pyramidal neurons, suggesting that these hemichannels contribute to dendritic signals associated with synaptic function. We found that, in pyramidal neurons, N-methyl-d-aspartate receptor (NMDAR) activation induced a secondary prolonged current and dye flux that were blocked with a specific inhibitory(More)
In the central nervous system, excitatory synaptic transmission is mediated by the neurotransmitter glutamate and its receptors. Interestingly, stimulation of group I metabotropic glutamate receptors (mGluRs) can either enhance or depress synaptic transmission at CA1 hippocampal synapses. Here we report that co-activation of mGluR5, a member of the group I(More)
Synaptic plasticity, which is the neuronal substrate for many forms of hippocampus-dependent learning, is attenuated by GABA type A receptor (GABA(A)R)-mediated inhibition. The prevailing notion is that a synaptic or phasic form of GABAergic inhibition regulates synaptic plasticity; however, little is known about the role of GABA(A)R subtypes that generate(More)
The direction of plasticity at CA3-CA1 hippocampal synapses is determined by the strength of afferent stimulation. Weak stimuli lead to long-term depression (LTD) and strong stimuli to long-term potentiation (LTP), but both require activation of synaptic N-methyl-D-aspartate receptors (NMDARs). These receptors are therefore necessary and required for the(More)
Receptor tyrosine kinases (RTKs) are membrane spanning proteins with intrinsic kinase activity. Although these receptors are known to be involved in proliferation and differentiation of cells, their roles in regulating central synaptic transmission are largely unknown. In CA1 pyramidal neurons, activation of D2 class dopamine receptors depressed excitatory(More)
Cardiac arrest victims may experience transient brain hypoperfusion leading to delayed death of hippocampal CA1 neurons and cognitive impairment. We prevented this in adult rats by inhibiting the expression of transient receptor potential melastatin 7 (TRPM7), a transient receptor potential channel that is essential for embryonic development, is necessary(More)
The phosphorylation and trafficking of N-methyl-d-aspartate (NMDA) receptors are tightly regulated by the Src family tyrosine kinase Fyn, through dynamic interactions with various scaffolding proteins in the NMDA receptor complex. Fyn acts as a point of convergence for many signaling pathways that upregulate GluN2B-containing NMDA receptors. In the(More)