Michael F. Gallagher

Learn More
Thrombosis is common in ovarian cancer. However, the interaction of platelets with ovarian cancer cells has not been critically examined. To address this, we investigated platelet interactions in a range of ovarian cancer cell lines with different metastatic potentials [HIO-80, 59M, SK-OV-3, A2780, A2780cis]. Platelets adhered to ovarian cancer cells with(More)
Epithelial ovarian cancer (EOC) has an innate susceptibility to become chemoresistant. Up to 30% of patients do not respond to conventional chemotherapy [paclitaxel (Taxol®) in combination with carboplatin] and, of those who have an initial response, many patients relapse. Therefore, an understanding of the molecular mechanisms that regulate cellular(More)
Despite decades of research, ovarian cancer is still associated with unacceptably high mortality rates, which must be addressed by novel therapeutic approaches. One avenue through which this may be achieved is targeting of tumor-initiating ‘Cancer Stem Cells’ (CSCs). CSCs are sufficient to generate primary and recurrent disease through extensive rounds of(More)
BACKGROUND Tumours with high proportions of differentiated cells are considered to be of a lower grade to those containing high proportions of undifferentiated cells. This property may be linked to the differentiation properties of stem cell-like populations within malignancies. We aim to identify molecular mechanism associated with the generation of(More)
The prognosis of epithelial ovarian cancer is poor in part due to the high frequency of chemoresistance. Recent evidence points to the Toll-like receptor-4 (TLR4), and particularly its adaptor protein MyD88, as one potential mediator of this resistance. This study aims to provide further evidence that MyD88 positive cancer cells are clinically significant,(More)
BACKGROUND Malignant ovarian disease is characterised by high rates of mortality due to high rates of recurrent chemoresistant disease. Anecdotal evidence indicates this may be due to chemoresistant properties of cancer stem cells (CSCs). However, our understanding of the role of CSCs in recurrent ovarian disease remains sparse. In this study we used gene(More)
SOX2 is a core component of the transcriptional network responsible for maintaining embryonal carcinoma cells (ECCs) in a pluripotent, undifferentiated state of self-renewal. As such, SOX2 is an oncogenic transcription factor and crucial cancer stem cell (CSC) biomarker in embryonal carcinoma and, as more recently found, in the stem-like cancer cell(More)
Ovarian cancer is associated with poor long-term survival due to late diagnosis and development of chemoresistance. Tumour hypoxia is associated with many features of tumour aggressiveness including increased cellular proliferation, inhibition of apoptosis, increased invasion and metastasis, and chemoresistance, mostly mediated through hypoxia-inducible(More)
Platinum resistance is a major cause of treatment failure in ovarian cancer. We previously identified matrix metalloproteinase 9 (MMP-9) as a potential therapeutic target of chemoresistant disease. A2780cis (cisplatin-resistant) and A2780 (cisplatin-sensitive) ovarian carcinoma cell lines were used. The cytotoxic effect of MMP-9/MMP-2 inhibitor,(More)
Resistance to neoadjuvant chemoradiation therapy (CRT) remains a critical barrier to the effective treatment of esophageal adenocarcinoma (EAC). Cancer stem-like cells (CSCs) are a distinct subpopulation of cells implicated in the resistance of tumors to anti-cancer therapy. However, their role in the resistance of EAC to CRT is largely unknown. In this(More)