Michael F. Cohen

Learn More
Image analysis and enhancement tasks such as tone mapping, colorization, stereo depth, and photomontage, often require computing a solution (e.g., for exposure, chromaticity, disparity, labels) over the pixel grid. Computational and memory costs often require that a smaller solution be run over a downsampled image. Although general purpose upsampling(More)
We describe an interactive, computer-assisted framework for combining parts of a set of photographs into a single composite picture, a process we call "digital photomontage." Our framework makes use of two techniques primarily: graph-cut optimization, to choose good seams within the constituent images so that they can be combined as seamlessly as possible;(More)
We describe an image based rendering approach that generalizes many current image based rendering algorithms, including light field rendering and view-dependent texture mapping. In particular, it allows for lumigraph-style rendering from a set of input cameras in arbitrary configurations (i.e., not restricted to a plane or to any specific manifold). In the(More)
Digital photography has made it possible to quickly and easily take a pair of images of low-light environments: one with flash to capture detail and one without flash to capture ambient illumination. We present a variety of applications that analyze and combine the strengths of such flash/no-flash image pairs. Our applications include denoising and detail(More)
Image matting is the problem of determining for each pixel in an image whether it is foreground, background, or the mixing parameter, "alpha", for those pixels that are a mixture of foreground and background. Matting is inherently an ill-posed problem. Previous matting approaches either use naive color sampling methods to estimate foreground and background(More)
ures proves difficult, even with the most sophisticated software available. Once an acceptable animation segment has been created, either by an animator or through motion capture, the results remain difficult to reuse. The additional work to modify the animation may take almost as much time as creating the original motion. Furthermore, the exact style or(More)
In this paper, we introduce a novel system for browsing, enhancing, and manipulating casual outdoor photographs by combining them with already existing georeferenced digital terrain and urban models. A simple interactive registration process is used to align a photograph with such a model. Once the photograph and the model have been registered, an abundance(More)
Interactive Spacetime Control for Animation Michael F. Cohen* Department of Computer Science University of Utah Salt Lake City, Utah 84112 This paper describes new techniques to design physically based, goal directed motion of synthetic creatures. More specifically, it concentrates on developing an interactive framework for specifying constraints and(More)