Michael F. Allen

Learn More
The fine roots of trees are concentrated on lateral branches that arise from perennial roots. They are important in the acquisition of water and essential nutrients, and at the ecosystem level, they make a significant contribution to biogeochemical cycling. Fine roots have often been studied according to arbitrary size classes, e.g., all roots less than 1(More)
Fine root processes play a prominent role in the carbon and nutrient cycling of boreal ecosystems due to the high proportion of biomass allocated belowground and the rapid decomposition of fine roots relative to aboveground tissues. To examine these issues in detail, major components of ecosystem carbon flux were studied in three mature black spruce forests(More)
The diversity of mycorrhizal fungi does not follow patterns of plant diversity, and the type of mycorrhiza may regulate plant species diversity. For instance, coniferous forests of northern latitudes may have more than 1000 species of ectomycorrhizal (EM) fungi where only a few ectomycorrhizal plant species dominate, but there are fewer than 25 species of(More)
Two species of Agropyron grass differed strikingly in their capacity to compete for phosphate in soil interspaces shared with a common competitor, the sagebrush Artemisia tridentata. Of the total phosphorus-32 and -33 absorbed by Artemisia, 86 percent was from the interspace shared with Agropyron spicatum and only 14 percent from that shared with Agropyron(More)
Soil microorganisms mediate belowand aboveground processes, but it is dif®cult to monitor such organisms because of the inherent cryptic nature of the soil. Traditional `blind' sampling methods yield high sample variance. Coupled with low sample size, this results in low statistical power and thus high type II error rates. Consequently, when null hypotheses(More)
The infectivity of ten commercial mycorrhizal inoculants was examined in nursery conditions. Corn plants were grown in a soil-based medium and in two different soilless substrates, a potting mix prepared with redwood bark, pine sawdust, calcined clay and sand, and the commercial Sunshine #5 mix, mainly composed of Canadian sphagnum peat moss. The percentage(More)
Mycorrhizae regulate elemental and energy flows in terrestrial ecosystems. We understand much of how mycorrhizae work, but integrating all possible mechanisms into a whole has proven elusive. Multiple evolutionary events and the long evolutionary history mean that different plants and fungi bring independent characteristics to the symbiosis. This variety(More)
* Stable isotope abundance analyses recently revealed that some European green orchids and pyroloids (Ericaceae) are partially myco-heterotrophic, exploiting mycorrhizal fungi for organic carbon and nitrogen. Here we investigate related species to assess their nutritional mode across various forest and climate types in Germany and California. * C- and(More)
Characterization of spatial and temporal variation of soil respiration coupled with fine root and rhizomorph dynamics is necessary to understand the mechanisms that regulate soil respiration. A dense wireless network array of soil CO2 sensors in combination with minirhizotron tubes was used to continuously measure soil respiration over 1 yr in a mixed(More)
Several available models of arbuscular mycorrhizal infection are based on fitting % infection to a logistic curve and then relating the various parameters to biological functions. I suggest here that this direction is misleading. Percent infection is a value derived from the growth of two interdependent but distinct organisms, each of which is seeking to(More)