Learn More
This article describes further evidence for a new neural network theory of biological motion perception. The theory clarifies why parallel streams V1----V2, V1----MT, and V1----V2----MT exist for static form and motion form processing among the areas V1, V2, and MT of visual cortex. The theory suggests that the static form system (Static BCS) generates(More)
Recent theories of lightness perception assume that lightness (perceived reflectance) is computed by a process that contrasts the target's luminance with that of one or more regions in its spatial surround. A challenge for any such theory is the phenomenon of lightness assimilation, which occurs when increasing the luminance of a surround region increases(More)
A model of darkness induction based on a neural filling-in mechanism is proposed. The model borrows principles from both Land's Retinex theory and BCS/FCS filling-in model of Grossberg and colleagues. The main novel assumption of the induction model is that darkness filling-in signals, which originate at luminance borders, are partially blocked when they(More)
The metacontrast paradigm was exploited to study possible inhibitory interactions between sustained and transient channels. Variations and measures of target disinhibition or target recovery. The former type of target recovery is taken as evidence for interchannel sustained-on-transient inhibition; the latter, as evidence for intrachannel(More)
It has been hypothesized that lightness is computed in a series of stages involving: (1) extraction of local contrast or luminance ratios at borders; (2) edge integration, to combine contrast or luminance ratios across space; and (3) anchoring, to relate the relative lightness scale computed in Stage 2 to the scale of real-world reflectances. The results of(More)
To maintain color constancy, the human visual system must distinguish surface reflectance-based variations in wavelength and luminance from variations due to illumination. Edge integration theory proposes that this is accomplished by spatially integrating steps in luminance and color contrast that likely result from reflectance changes. Thus, a neural(More)
Two brief flashes of light, separated in both time and space, create an illusion of movement from the location of the first flash to that of the second when the spatiotemporal parameters of the display are within the correct range. This phenomenon is called the Phi phenomenon. The authors present a summary of several psychophysical results that illustrate(More)
Edge integration refers to a hypothetical process by which the visual system combines information about the local contrast, or luminance ratios, at luminance borders within an image to compute a scale of relative reflectances for the regions between the borders. The results of three achromatic color matching experiments, in which a test and matching ring(More)