Learn More
Recent theories of lightness perception assume that lightness (perceived reflectance) is computed by a process that contrasts the target's luminance with that of one or more regions in its spatial surround. A challenge for any such theory is the phenomenon of lightness assimilation, which occurs when increasing the luminance of a surround region increases(More)
It has been hypothesized that lightness is computed in a series of stages involving: (1) extraction of local contrast or luminance ratios at borders; (2) edge integration, to combine contrast or luminance ratios across space; and (3) anchoring, to relate the relative lightness scale computed in Stage 2 to the scale of real-world reflectances. The results of(More)
To maintain color constancy, the human visual system must distinguish surface reflectance-based variations in wavelength and luminance from variations due to illumination. Edge integration theory proposes that this is accomplished by spatially integrating steps in luminance and color contrast that likely result from reflectance changes. Thus, a neural(More)
Previous work has shown that the achromatic color of a target patch embedded in simple two-dimensional display depends not only on the luminance contrast between the target and its immediate surround but also on the contrasts of other nearby edges. Quantitative models have been proposed in which the target color is modeled as a spatially weighted sum of(More)
The brightness of an isolated test patch is related to its luminance by a power law having an exponent of about 1/3, a result known as Stevens's brightness law. The brightness law exponent characterizes the rate at which brightness grows with luminance and can thus be thought of as an "exponential" gain factor. We studied changes in this gain factor for(More)
Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach,(More)