Learn More
NRAMPs (natural resistance-associated macrophage proteins) have been characterized in mammals as divalent transition metal transporters involved in iron metabolism and host resistance to certain pathogens. The mechanism of pathogen resistance is proposed to involve sequestration of Fe2+ and Mn2+, cofactors of both prokaryotic and eukaryotic catalases and(More)
The mgtB locus codes for one of three distinct Mg2+ transport systems of Salmonella typhimurium. The system encoded by the mgtB locus mediates Mg2+ influx only. The nucleotide sequence of a 4.6-kilobase fragment of DNA carrying mgtB has been determined. Two open reading frames were apparent. The most 5' (mgtC) could encode a hydrophobic protein of up to 25(More)
Though an essential trace element, manganese is generally accorded little importance in biology other than as a cofactor for some free radical detoxifying enzymes and in the photosynthetic photosystem II. Only a handful of other Mn2+-dependent enzymes are known. Recent data, primarily in bacteria, suggest that Mn2+-dependent processes may have significantly(More)
Salmonella typhimurium contains three distinct transport systems (CorA, MgtA, and MgtB) that move Mg2+ across the cytoplasmic membrane. Mutant strains containing only one of these three systems have been constructed and used to study each system in isolation. Characterization of these systems has been hampered, however, by the need to use 28Mg2+, a(More)
MntH, a bacterial homolog of the mammalian natural resistance-associated macrophage protein 1 (Nramp1), is a primary Mn(2+) transporter of Salmonella enterica serovar Typhimurium and Escherichia coli. S. enterica serovar Typhimurium MntH expression is important for full virulence; however, strains carrying an mntH deletion are only partially attenuated and(More)
The chemistry of Mg2+ is unique amongst biological cations, and the properties of Mg2+ transport systems reflect this chemistry. Prokaryotes carry three classes of Mg2+ transport systems: CorA, MgtA/B and MgtE. CorA and MgtE are widely distributed in both Eubacteria and Archaea, while the MgtA/B class is found primarily in the Eubacteria. Eukaryotic(More)
The CorA Mg2+ transport system of Salmonella typhimurium mediates both influx and efflux of Mg2+. Mutations at the corA locus (83.5 min) confer resistance to Co2+. Using transposon mutagenesis, three additional Co2+ resistance loci (corB, corC, and corD) were found and mapped to 55, 15, and 3min, respectively, on the S. typhimurium chromosome. No mutations(More)
Three loci in Salmonella typhimurium (corA, mgtA, and mgtB) code for components of distinct Mg2+ transport systems (S. P. Hmiel, M. D. Snavely, J. B. Florer, M. E. Maguire, and C. G. Miller, J. Bacteriol. 171:4742-4751, 1989). Strains carrying one wild-type and two mutant alleles of the three loci were constructed to study the kinetics and specificity of(More)
The magnesium ion, Mg2+, is essential for myriad biochemical processes and remains the only major biological ion whose transport mechanisms remain unknown. The CorA family of magnesium transporters is the primary Mg2+ uptake system of most prokaryotes and a functional homologue of the eukaryotic mitochondrial magnesium transporter. Here we determine crystal(More)