Michael Dingkuhn

Learn More
BACKGROUND AND AIMS There are three reasons for the increasing demand for crop models that build the plant on the basis of architectural principles and organogenetic processes: (1) realistic concepts for developing new crops need to be guided by such models; (2) there is an increasing interest in crop phenotypic plasticity, based on variable architecture(More)
Fertile interspecific progenies between Oryza sativa L. and O. glaberrima Steud. were produced through backcrossing and doubled haploid breeding (DHB). Backcrossing with the O. sativa parents increased fertility and helped combine the O. sativa and O. glaberrima features. The use of DHB to generate a large proportion of doubled haploids from interspecific(More)
BACKGROUND AND AIMS Physiological and architectural plant models have originally been developed for different purposes and therefore have little in common, thus making combined applications difficult. There is, however, an increasing demand for crop models that simulate the genetic and resource-dependent variability of plant geometry and architecture,(More)
Rice is a crop prone to drought stress in upland and rainfed lowland ecosystems. A deep root system is recognized as the best drought avoidance mechanism. Genome-wide association mapping offers higher resolution for locating quantitative trait loci (QTLs) than QTL mapping in biparental populations. We performed an association mapping study for root traits(More)
Salinity is a major constraint to irrigated rice production, particularly in semi-arid and arid climates. Irrigated rice is a well suited crop to controlling and even decreasing soil salinity, but rice is a salt-susceptible crop and yield losses due to salinity can be substantial. The objective of this study was to develop a highly predictive screening tool(More)
BACKGROUND AND AIMS It is increasingly accepted that crop models, if they are to simulate genotype-specific behaviour accurately, should simulate the morphogenetic process generating plant architecture. A functional-structural plant model, GREENLAB, was previously presented and validated for maize. The model is based on a recursive mathematical process,(More)
Salinity is a major yield-reducing stress in many arid and/or coastal irrigation systems for rice. Past studies on salt stress have mainly addressed the vegetative growth stage of rice, and little is known on salt effects on the reproductive organs. Sodium and potassium uptake of panicles was studied for eight rice cultivars in field trials under irrigation(More)
BACKGROUND AND AIMS Despite its simple architecture and small phenotypic plasticity, oil palm has complex phenology and source-sink interactions. Phytomers appear in regular succession but their development takes years, involving long lag periods between environmental influences and their effects on sinks. Plant adjustments to resulting source-sink(More)
Salinity is a major yield-reducing factor in coastal and arid, irrigated rice production systems. Salt tolerance is a major breeding objective. Three rice cultivars with different levels of salt tolerance were studied in the field for growth, sodium uptake, leaf chlorophyll content, specific leaf area (SLA), sodium concentration and leaf CO2 exchange rates(More)
BACKGROUND AND AIMS Oil palm flowering and fruit production show seasonal maxima whose causes are unknown. Drought periods confound these rhythms, making it difficult to analyse or predict dynamics of production. The present work aims to analyse phenological and growth responses of adult oil palms to seasonal and inter-annual climatic variability. METHODS(More)