Michael D. Urbaniak

Learn More
We report a global quantitative phosphoproteomic study of bloodstream and procyclic form Trypanosoma brucei using SILAC labeling of each lifecycle stage. Phosphopeptide enrichment by SCX and TiO2 led to the identification of a total of 10096 phosphorylation sites on 2551 protein groups and quantified the ratios of 8275 phosphorylation sites between the two(More)
Conventional drug design embraces the "one gene, one drug, one disease" philosophy. Polypharmacology, which focuses on multi-target drugs, has emerged as a new paradigm in drug discovery. The rational design of drugs that act via polypharmacological mechanisms can produce compounds that exhibit increased therapeutic potency and against which resistance is(More)
The protozoan parasite Trypanosoma brucei has a complex digenetic lifecycle between a mammalian host and an insect vector, and adaption of its proteome between lifecycle stages is essential to its survival and virulence. We have optimized a procedure for growing Trypanosoma brucei procyclic form cells in conditions suitable for stable isotope labeling by(More)
Trypanosoma brucei, the causative agent of human African trypanosomiasis, affects tens of thousands of sub-Saharan Africans. As current therapeutics are inadequate due to toxic side effects, drug resistance, and limited effectiveness, novel therapies are urgently needed. UDP-galactose 4'-epimerase (TbGalE), an enzyme of the Leloir pathway of galactose(More)
The glycosome of the pathogenic African trypanosome Trypanosoma brucei is a specialized peroxisome that contains most of the enzymes of glycolysis and several other metabolic and catabolic pathways. The contents and transporters of this membrane-bounded organelle are of considerable interest as potential drug targets. Here we use epitope tagging, magnetic(More)
Induction of RNA interference targeted against casein kinase 1 isoform 2 (TbCK1.2, Tb927.5.800) in bloodstream form Trypanosoma brucei in vitro results in rapid cessation of growth, gross morphological changes, multinucleation and ultimately cell death. A null mutant of the highly homologous casein kinase 1 isoform 1 (Tb927.5.790) in bloodstream form T.(More)
The structure of the NAD-dependent oxidoreductase UDP-galactose-4'-epimerase from Trypanosoma brucei in complex with cofactor and the substrate analogue UDP-4-deoxy-4-fluoro-alpha-D-galactose has been determined using diffraction data to 2.7 A resolution. Despite the high level of sequence and structure conservation between the trypanosomatid enzyme and(More)
The metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individual metabolic networks is increasing as we learn more about the enzymes that are active in particular cells under(More)
The life cycle of Trypanosoma brucei involves developmental transitions that allow survival, proliferation, and transmission of these parasites. One of these, the differentiation of growth-arrested stumpy forms in the mammalian blood into insect-stage procyclic forms, can be induced synchronously in vitro with cis-aconitate. Here, we show that this(More)
The protozoan parasite Trypanosoma brucei is the causative agent of African sleeping sickness, and there is an urgent unmet need for improved treatments. Parasite protein kinases are attractive drug targets, provided that the host and parasite kinomes are sufficiently divergent to allow specific inhibition to be achieved. Current drug discovery efforts are(More)