Michael D. Stern

Learn More
The elementary events of excitation-contraction coupling in heart muscle are Ca2+ sparks, which arise from one or more ryanodine receptors in the sarcoplasmic reticulum (SR). Here a simple numerical model is constructed to explore Ca2+ spark formation, detection, and interpretation in cardiac myocytes. This model includes Ca2+ release, cytosolic diffusion,(More)
Determination of the calcium spark amplitude distribution is of critical importance for understanding the nature of elementary calcium release events in striated muscle. In the present study we show, on general theoretical grounds, that calcium sparks, as observed in confocal line scan images, should have a nonmodal, monotonic decreasing amplitude(More)
1. Ca2+ release flux across the sarcoplasmic reticulum (SR) during cardiac excitation-contraction coupling was investigated using a novel fluorescence method. Under whole-cell voltage-clamp conditions, rat ventricular myocytes were dialysed with a high concentration of EGTA (4.0 mM, 150 nM free Ca2+), to minimize the residence time of released Ca2+ in the(More)
Local, rhythmic, subsarcolemmal Ca releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na -Ca exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LCRs under basal conditions, whereas ventricular cells(More)
1. The relation between mitochondrial membrane potential (delta psi m) and cell function was investigated in single adult rat cardiac myocytes during anoxia and reoxygenation. delta psi m was studied by loading myocytes with JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'- tetra-ethylbenzimidazolylcarbocyanine iodide), a fluorescent probe characterized by two(More)
A technique that allows the continuous measurement of mitochondrial free Ca2+ ([Ca2+]m) in a single living cardiac myocyte is described. It involves the introduction of the fluorescent chelating agent indo-1 into the cell by exposure to the acetoxymethyl ester, followed by selective quenching of the fluorescence of indo-1 in the cytosol by Mn2+. The(More)
Single canine cardiac ryanodine receptor channels were incorporated into planar lipid bilayers. Single-channel currents were sampled at 1–5 kHz and filtered at 0.2–1.0 kHz. Channel incorporations were obtained in symmetrical solutions (20 mM HEPES-Tris, pH 7.4, and pCa 5). Unitary Ca 2 1 currents were monitored when 2–30 mM Ca 2 1 was added to the lumenal(More)
An algorithm for the calculation of Ca2+ release flux underlying Ca2+ sparks (Blatter, L.A., J. Hüser, and E. Ríos. 1997. Proc. Natl. Acad. Sci. USA. 94:4176-4181) was modified and applied to sparks obtained by confocal microscopy in single frog skeletal muscle fibers, which were voltage clamped in a two-Vaseline gap chamber or permeabilized and immersed in(More)