Learn More
Nuclear quadrupole resonance (NQR) offers an unequivocal method of detecting and identifying land mines. Unfortunately, the practical use of NQR is restricted by the low signal-to-noise ratio (SNR), and the means to improve the SNR are vital to enable a rapid, reliable, and convenient system. In this paper, an approximate maximum-likelihood detector (AML)(More)
The problem of estimating the spectral content of exponentially decaying signals from a set of irregularly sampled data is of considerable interest in several applications, for example in various forms of radio frequency spectroscopy. In this paper, we propose a new nonparametric iterative adaptive approach that provides a solution to this estimation(More)
Nuclear quadrupole resonance (NQR) is a solid-state radio frequency (RF) spectroscopic technique, allowing the detection of compounds containing quadrupolar nuclei, a requirement fulfilled by many high explosives and narcotics. The practical use of NQR is restricted by the inherently low signal-to-noise ratio (SNR) of the observed signals, a problem that is(More)
Nuclear quadrupole resonance is a radio frequency (rf) spectroscopic technique, closely related to NMR, which can be used to detect signals from solids containing nuclei with spin quantum number >1/2. It is nondestructive, highly specific and noninvasive, requires no static magnetic field, and as such is currently used in the detection of explosives and(More)
We report the detection and analysis of a suspected counterfeit sample of the antimalarial medicine Metakelfin through developing nitrogen-14 nuclear quadrupole resonance ((14)N NQR) spectroscopy at a quantitative level. The sensitivity of quadrupolar parameters to the solid-state chemical environment of the molecule enables development of a technique(More)
Pulsed (35)Cl nuclear quadrupole resonance (NQR) experiments have been performed on 250-mg tablets of the antidiabetic medicine Diabinese to establish the conditions needed for noninvasive quantitative analysis of the medicine in standard bottles. One important condition is the generation of a uniform radio-frequency (RF) field over the sample, which has(More)
The explosive pentaerythritol tetranitrate (PETN) C(CH(2)-O-NO(2))(4) has been studied by (1)H NMR and (14)N NQR. The (14)N NQR frequency and spin-lattice relaxation time T(1Q) for the nu(+) line have been measured at temperatures from 255 to 325K. The (1)H NMR spin-lattice relaxation time T(1) has been measured at frequencies from 1.8kHz to 40MHz and at(More)
Multiple pulse sequences are widely used for signal enhancement in NQR detection applications. Since the various (14)N NQR relaxation times, signal decay times and frequency of each NQR line have a major influence on detection sequence performance, it is important to characterise these parameters and their temperature variation, as fully as possible. In(More)