Michael D. Morris

Learn More
BACKGROUND Progress in the diagnosis and prediction of fragility fractures depends on improvements to the understating of the compositional contributors of bone quality to mechanical competence. Raman spectroscopy has been used to evaluate alterations to bone composition associated with aging, disease, or injury. QUESTIONS/PURPOSES In this survey we will(More)
We have identified a basic helix-loop-helix encoding cDNA from embryonic chicken retina which shares sequence similarity with the achaete-scute family of genes of Drosophila. The deduced amino acid sequence of this chicken achaete-scute homolog (CASH-1) is identical, over the region encoding the basic helix-loop-helix domain, to the recently identified(More)
The infrared and Raman spectroscopy of bone and teeth tissues are reviewed. Characteristic spectra are obtained for both the mineral and protein components of these tissues. Vibrational spectroscopy is used to study the mineralization process, to define the chemical structure changes accompanying bone diseases, and to characterize interactions between(More)
BACKGROUND Prostate cancer frequently metastasizes to bone. However, unlike many other tumors that produce osteolytic lesions, prostate cancer produces osteoblastic lesions through unknown mechanisms. In the current study, we explored the ability and mechanism of an osteotropic prostate cancer cell line (C4-2B) to induce mineralization. METHODS C4-2B(More)
It is generally accepted that the hallmark of osteoporosis is a reduction in bone mass. There is significant overlap, however, in bone mineral density between osteoporotic and normal individuals. This study examined the chemical composition of bone tissue obtained from women who had sustained a fracture and women without fracture to determine if there are(More)
UNLABELLED To understand early mineralization events, we studied living murine calvarial tissue by Raman spectroscopy using fibroblast growth factor 2 (FGF2)-soaked porous beads. We detected increased levels of a transient phase resembling octacalcium phosphate in sutures undergoing premature suture closure. INTRODUCTION Several calcium phosphates have(More)
UNLABELLED The Brtl mouse model for type IV osteogenesis imperfecta improves its whole bone strength and stiffness between 2 and 6 months of age. This adaptation is accomplished without a corresponding improvement in geometric resistance to bending, suggesting an improvement in matrix material properties. INTRODUCTION The Brittle IV (Brtl) mouse was(More)
Raman spectroscopy is increasingly commonly used to understand how changes in bone composition and structure influence tissue-level bone mechanical properties. The spectroscopic technique provides information on bone mineral and matrix collagen components and on the effects of various matrix proteins on bone material properties as well. The Raman spectrum(More)
Raman microspectroscopy is a nondestructive vibrational spectroscopic technique that permits the study of organic and mineral species at micron resolution, offers the ability to work with hydrated and dehydrated specimens in vivo or in vitro, and requires minimal specimen preparation. We used Raman microspectroscopy to determine the composition of the(More)
Raman spectroscopic markers have been determined for fatigue-related microdamage in bovine bone. Microdamage was induced using a cyclic fatigue loading regime. After loading, the specimens were stained en-bloc with basic fuchsin to facilitate damage visualization and differentiate fatigue-induced damage from cracks generated during subsequent histological(More)