Learn More
Current evidence suggests that hypothalamic fatty acid metabolism may play a role in regulating food intake; however, confirmation that it is a physiologically relevant regulatory system of feeding is still incomplete. Here, we use pharmacological and genetic approaches to demonstrate that the physiological orexigenic response to ghrelin involves specific(More)
In order to determine if the newly discovered neuropeptide, pituitary adenylate cyclase activating polypeptide (PACAP), interacts with the known hypothalamic releasing factors to modulate pituitary hormone secretion, the effect of PACAP, either alone or in combination with either LHRH, TRH, CRF or GHRH, was examined in rat anterior pituitary cell cultures.(More)
Ghrelin, the natural ligand for the growth hormone secretagogue-1a (GHS-1a) receptor, has received a great deal of attention due to its ability to stimulate weight gain and the hope that an antagonist of the GHS-1a receptor could be a treatment for obesity. We have discovered an analog of full-length human ghrelin, BIM-28163, which fully antagonizes GHS-1a(More)
Both unacylated ghrelin (UAG) and acylated ghrelin (AG) exert metabolic effects. To investigate the interactions between AG and UAG on ghrelin receptors we evaluated the effects of AG and UAG on INS-1E rat insulinoma cells, using insulin secretion after 30min static incubation as a read-out. A possible involvement of the growth hormone secretagogue receptor(More)
Somatostatin (SRIF) analogs interacting with SRIF receptor subtype (SSTR) 2 and SSTR5 are known to reduce secretion in GH-secreting pituitary adenomas. We investigated the effects of SRIF and a SSTR1 selective agonist, BIM-23926, on GH and prolactin (PRL) secretion and cell viability in primary cultures deriving from 15 GH- and PRL-secreting adenomas(More)
Ghrelin, a peptide hormone predominantly produced by the stomach, was isolated as the endogenous ligand for the growth hormone secretagogue receptor. Ghrelin is a potent stimulator of growth hormone (GH) secretion and is the only circulatory hormone known to potently enhance feeding and weight gain and to regulate energy homeostasis following central and(More)
Batterham et al. report that the gut peptide hormone PYY3-36 decreases food intake and body-weight gain in rodents, a discovery that has been heralded as potentially offering a new therapy for obesity. However, we have been unable to replicate their results. Although the reasons for this discrepancy remain undetermined, an effective anti-obesity drug(More)
Somatostatin was reported to inhibit Kaposi's sarcoma (KS) cell (KS-Imm) xenografts through an antiangiogenic activity. Here, we show that somatostatin blocks growth of established KS-Imm tumors with the same efficacy as adriamycin, a clinically effective cytotoxic drug. Whereas KS-Imm cells do not express somatostatin receptors (SSTRs), endothelial cells(More)
In a series of human corticotroph adenomas, we recently found predominant mRNA expression of somatostatin (SS) receptor subtype 5 (sst5). After 72 h, the multiligand SS analog SOM230, which has a very high sst5 binding affinity, but not Octreotide (OCT), significantly inhibited basal ACTH release. To further explore the role of sst5 in the regulation of(More)
Somatostatin is an inhibitor of hormone secretion through specific receptors (sst1-5). The aim of this study was to investigate the putative regulatory role of somatostatin analogues on the secretion of insulin and glucagon by rat pancreatic islets. After 48 h exposure only the non-selective agonists (somatostatin, octreotide and SOM-230) inhibited insulin(More)