Michael D. Altman

Learn More
Computer simulation is an important tool for improving our understanding of biomolecule electrostatics, in part to aid in drug design. However, the numerical techniques used in these simulation tools do not exploit fast solver approaches widely used in analyzing integrated circuit interconnects. In this paper we describe one popular formulation used to(More)
—This paper presents a fast boundary-element method (BEM) algorithm that is well suited for solving electrostatics problems that arise in traditional and bio-microelectromecha-nical systems (bio-MEMS) design. The algorithm, FFTSVD, is Green's-function-independent for low-frequency kernels and efficient for inhomogeneous problems. FFTSVD is a multiscale(More)
We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson-Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This(More)
  • 1