Learn More
This article describes three statistical models for natural language parsing. The models extend methods from probabilistic context-free grammars to lexicalized grammars, leading to approaches in which a parse tree is represented as the sequence of decisions corresponding to a head-centered, top-down derivation of the tree. Independence assumptions then lead(More)
This paper considers approaches which rerank the output of an existing probabilistic parser. The base parser produces a set of candidate parses for each input sentence, with associated probabilities that define an initial ranking of these parses. A second model then attempts to improve upon this initial ranking, using additional features of the tree as(More)
This paper introduces new learning algorithms for natural language processing based on the perceptron algorithm. We show how the algorithms can be efficiently applied to exponential sized representations of parse trees, such as the " all sub-trees " (DOP) representation described by (Bod 1998), or a representation tracking all sub-fragments of a tagged(More)
We describe a method for incorporating syntactic information in statistical machine translation systems. The first step of the method is to parse the source language string that is being translated. The second step is to apply a series of transformations to the parse tree, effectively reordering the surface string on the source language side of the(More)
We give a unified account of boosting and logistic regression in which each learning problem is cast in terms of optimization of Bregman distances. The striking similarity of the two problems in this framework allows us to design and analyze algorithms for both simultaneously, and to easily adapt algorithms designed for one problem to the other. For both(More)
This paper addresses the problem of mapping natural language sentences to lambda–calculus encodings of their meaning. We describe a learning algorithm that takes as input a training set of sentences labeled with expressions in the lambda calculus. The algorithm induces a grammar for the problem, along with a log-linear model that represents a distribution(More)
We present a discriminative part-based approach for the recognition of object classes from unsegmented cluttered scenes. Objects are modeled as flexible constellations of parts conditioned on local observations found by an interest operator. For each object class the probability of a given assignment of parts to local features is modeled by a Conditional(More)