Michael Churchill

Learn More
The human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) represents a model promoter system and the identification and characterisation of cellular proteins that interact with this region has provided a basic understanding about both general eukaryotic and HIV-1 proviral transcriptional regulation. To date a large number of(More)
The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of(More)
Understanding the pathogenesis of cancer-related bone disease is crucial to the discovery of new therapies. Here we identify activin A, a TGF-beta family member, as a therapeutically amenable target exploited by multiple myeloma (MM) to alter its microenvironmental niche favoring osteolysis. Increased bone marrow plasma activin A levels were found in MM(More)
NR3B is a modulatory subunit of the NMDA receptor, abundantly expressed in both cranial and spinal somatic motoneurons and at lower levels in other regions of the brain as well. Recently, we found the human NR3B gene (GRIN3B) to be highly genetically heterogeneous, and that approximately 10% of the normal European-American population lacks NR3B due to(More)
In the oxidized "ES" state of cytochrome c peroxidase, Trp-191 is reversibly oxidized to a stable cation free radical by the hypervalent heme. To explore the potential for engineering a binding site for heterocyclic compounds at this site, the mutant W191G was constructed. Two independent crystal structures of W191G at 2.1- and 2.3-A resolution show that(More)
The recently emerged severe acute respiratory syndrome coronavirus (SARS-CoV) is a potent pathogen of humans and is capable of rapid global spread. Peptide-conjugated antisense morpholino oligomers (P-PMO) were designed to bind by base pairing to specific sequences in the SARS-CoV (Tor2 strain) genome. The P-PMO were tested for their capacity to inhibit(More)
Cancer is a systemic disease. Local and distant factors conspire to promote or inhibit tumorigenesis. The bone marrow is one important source of tumor promoting cells. These include the important mature and immature hematopoietic cells as well as circulating mesenchymal progenitors. Recruited bone marrow cells influence carcinogenesis at the primary site,(More)
Tumor-propagating cells in acute leukemia maintain a stem/progenitor-like immature phenotype and proliferative capacity. Acute myeloid leukemia (AML) and acute T-lymphoblastic leukemia (T-ALL) originate from different lineages through distinct oncogenic events such as MLL fusions and Notch signaling, respectively. We found that Zfx, a transcription factor(More)
There has recently been an increasing interest in controlling macromolecular conformations and interactions through halogen bonding. Halogen bonds are favorable electrostatic interactions between polarized, electropositive chlorine, bromine, or iodine atoms and electronegative atoms such as oxygen or nitrogen. These interactions have been likened to(More)
The N-terminal cysteine-rich somatomedin B (SMB) domain (residues 1-44) of the human glycoprotein vitronectin contains the high-affinity binding sites for plasminogen activator inhibitor-1 (PAI-1) and the urokinase receptor (uPAR). We previously showed that the eight cysteine residues of recombinant SMB (rSMB) are organized into four disulfide bonds in a(More)