Michael C Westberg

Learn More
We analysed mitochondrial DNA (mtDNA) sequences from 154 bluethroats (Luscinia svecica) sampled at 21 sites throughout much of their Eurasian range. A previously reported, single base-pair mtDNA difference between L. s. svecica and L. s. namnetum was inconsistent upon expanded geographical sampling. A significant FST value (0.29) and an(More)
The effect of 16 liquid solvents on both the spectrum and molar absorption coefficient of the X3Σg- → b1Σg+ transition in molecular oxygen has been examined. The ability to monitor this weak transition using air or oxygen saturated samples at atmospheric pressure was facilitated by the rapid and efficient O2(b1Σg+) → O2(a1Δg) transition, which allowed the(More)
Singlet molecular oxygen, O2(a1Δg), is a Reactive Oxygen Species, ROS, that acts as a signaling and/or perturbing agent in mammalian cells, influencing processes that range from cell proliferation to cell death. Although the importance of O2(a1Δg) in this regard is acknowledged, an understanding of the targets and mechanisms of O2(a1Δg) action is(More)
Singlet oxygen, O(2)(a(1)Δ(g)), plays a key role in many processes of cell signaling. Limitations in mechanistic studies of such processes are generally associated with the difficulty of controlling the amount and location of O(2)(a(1)Δ(g)) production in or on a cell. As such, there is great need for a system that (a) selectively produces O(2)(a(1)Δ(g)) in(More)
The effect of solvent on the lifetime of singlet oxygen, O2(a(1)Δg), particularly the pronounced H/D solvent isotope effect, has drawn the attention of chemists for almost 50 years. The currently accepted model for this phenomenon is built on a foundation in which the electronic excitation energy of O2(a(1)Δg) is transferred to vibrational modes in a(More)
Singlet oxygen, O2(a1Δg), the lowest excited electronic state of molecular oxygen, is an omnipresent part of life on earth. It is readily formed through a variety of chemical and photochemical processes, and its unique reactions are important not just as a tool in chemical syntheses but also in processes that range from polymer degradation to signaling in(More)
Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works(More)
Selected singlet oxygen photosensitizers have been examined from the perspective of obtaining a molecule that is sufficiently stable under conditions currently employed to study singlet oxygen behavior in single mammalian cells. Reasonable predictions about intracellular sensitizer stability can be made based on solution phase experiments that approximate(More)
The purpose of this thesis is to examine the outcomes of the 2011 Arab Spring from the perspective of regime types within the Middle East and North Africa. The intense year of protest that spread throughout the Arab world had disparate effects between countries which this paper investigates. Utilizing an institutional approach, I separate the Arab world(More)
Octahedral tungsten iodide clusters equipped with apical ligands (L) are synthesized to implement substantial photophysical properties. The [W6I8(CF3COO)6]2- cluster reported herein is the first example of a family of ligand substituted [W6I8L6]2- clusters. Such compounds are expected to exhibit a rich photochemistry in which the apical ligands play a(More)