Michael C. Roggemann

Learn More
Simulating the effects of atmospheric turbulence on optical imaging systems is an important aspect of understanding the performance of these systems. Simulations are particularly important for understanding the statistics of some adaptive-optics system performance measures, such as the mean and variance of the compensated optical transfer function, and for(More)
The performance of ground-based optical imaging systems is severely degraded from the diffraction limit by the random effects of the atmosphere. Adaptive-optics techniques have been used to compensate for atmospheric-turbulence effects. A critical component in the adaptive-optics system is the wave-front sensor. At present, two types of sensors are common:(More)
The probability density function (PDF) of aperture-averaged irradiance fluctuations is calculated from wave-optics simulations of a laser after propagating through atmospheric turbulence to investigate the evolution of the distribution as the aperture diameter is increased. The simulation data distribution is compared to theoretical gamma-gamma and(More)
The Earth's atmosphere has significant effects on the propagation of electromagnetic (EM) radiation and accordingly degrades the performance of electro-optical systems. These effects are attributed to atmospheric turbulence and to absorption and scattering of EM waves by atmospheric molecules and aerosols. In this paper we develop a detailed model of the(More)
Michelson stellar interferometers with long baselines have been proposed as a means for obtaining high-resolution images of space objects. The fringes measured in such interferometers move randomly owing to atmospheric turbulence effects. For overcoming turbulence effects the fringe phase at any instant is summed around groups of three or more aperture(More)
A two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere is presented. This system uses a deformable mirror and a Fourier-transforming mirror to adjust the amplitude of the wave front in the telescope pupil, similar to kinoforms used in laser beam shaping. A second deformable mirror is(More)
Because of mechanical aspects of fabrication, launch, and operational environment, space telescope optics can suffer from unforeseen aberrations, detracting from their intended diffraction-limited performance goals. We give the results of simulation studies designed to explore how wave-front aberration information for such near-diffraction-limited(More)
Wave-front sensing and deformable mirror control algorithms in adaptive optics systems are designed on the premise that a continuous phase function exists in the telescope pupil that can be conjugated with a deformable mirror for the purpose of projecting a laser beam. However, recent studies of coherent wave propagation through turbulence have shown that(More)
One method for improving the quality of astronomical images measured through a atmospheric turbulence uses simultaneous short-exposure measurements of both an image and the output of a wave-front sensor exposed to an image of the telescope pupil. The wave-front sensor measurements are used to reconstruct an estimate of the instantaneous generalized pupil(More)
Quadratic aberration is successfully corrected with a segmented microelectromechanical deformable mirror in conjunction with a refractive lenslet array. Use of the lenslet array greatly improves the effective fill factor of the correcting element. Experimental results show correction approaching the diffraction limit for an extreme spherical aberration.