Learn More
Hearing impairment due to the loss of sensory hair cells is permanent in humans. Considerable interest targets the hair cell differentiation factor Atoh1 as a potential tool with which to promote hair cell regeneration. We generated a novel mouse model to direct the expression of Atoh1 in a spatially and temporally specific manner in the postnatal mammalian(More)
The cochlea possesses specialized features to receive sound signals and to resolve and convert the frequency and intensity components within each signal for auditory perception. It consists of precisely patterned and polarized sensory cells adorned with a highly specialized mechanotransduction apparatus for sensitivity and adaptation, and discrete(More)
The human ear is capable of processing sound with a remarkable resolution over a wide range of intensity and frequency. This ability depends largely on the extraordinary feats of the hearing organ, the organ of Corti and its sensory hair cells. The organ of Corti consists of precisely patterned rows of sensory hair cells and supporting cells along the(More)
The basic helix-loop-helix (bHLH) gene Hes6 is known to promote neural differentiation in vitro. Here, we report the expression and functional studies of Hes6 in the inner ear. The expression of Hes6 appears to be parallel to that of Math1 (also known as Atoh1), a bHLH gene necessary and sufficient for hair cell differentiation. Hes6 is expressed initially(More)
Loss of vestibular hair cells is a common cause of balance disorders. Current treatment options for bilateral vestibular dysfunction are limited. During development, atonal homolog 1 (Atoh1) is sufficient and necessary for the formation of hair cells and provides a promising gene target to induce hair cell generation in the mammals. In this study, we used a(More)
  • 1