Michael C Haibach

  • Citations Per Year
Learn More
Known for over a century, reactions that involve intramolecular hydride-transfer events have experienced a recent resurgence. Undoubtedly responsible for the increased interest in this research area is the realization that hydride shifts represent an attractive avenue for C-H bond functionalization. The redox-neutral nature of these complexity-enhancing(More)
Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of(More)
Aryl alkyl ethers, which are widely used throughout the chemical industry, are typically produced via the Williamson ether synthesis. Olefin hydroaryloxylation potentially offers a much more atom-economical alternative. Known acidic catalysts for hydroaryloxylation, however, afford very poor selectivity. We report the organometallic-catalyzed intermolecular(More)
The development of efficient catalytic methods to cleave the relatively unreactive C-O bonds of ethers remains an important challenge in catalysis. Building on our group's recent work, we report the dehydroaryloxylation of aryl alkyl ethers using pincer iridium catalysts. This method represents a rare fully atom-economical method for ether C-O bond cleavage.
Milstein's complex (PNN)RuHCl(CO) catalyzes the efficient reduction of aryl and alkyl halides under relatively mild conditions, using isopropanol and a base. Sterically hindered tertiary and neopentyl substrates are reduced efficiently, as well as more functionalized aryl and alkyl bromides. The reduction process is proposed to occur via radical(More)
An O-Si bond construction protocol employing abundantly available and inexpensive NaOH as the catalyst is described. The method enables the cross-dehydrogenative coupling of an alcohol and hydrosilane to directly generate the corresponding silyl ether under mild conditions and without the production of stoichiometric salt byproducts. The scope of both(More)
A study of electronic factors governing the thermodynamics of C-H and N-H bond addition to Ir(I) complexes was conducted. DFT calculations were performed on an extensive series of trans-(PH3)2IrXL complexes (L = NH3 and CO; X = various monodentate ligands) to parametrize the relative σ- and π-donating/withdrawing properties of the various ligands, X.(More)
  • 1