Michael C. Dietze

Learn More
[1] Our current understanding of terrestrial carbon processes is represented in various models used to integrate and scale measurements of CO 2 exchange from remote sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine how well models simulate carbon processes across vegetation types and environmental conditions. Using(More)
Phenology, by controlling the seasonal activity of vegetation on the land surface, plays a fundamental role in regulating photosynthesis and other ecosystem processes, as well as competitive interactions and feedbacks to the climate system. We conducted an analysis to evaluate the representation of phenology, and the associated seasonality of ecosystem(More)
[1] Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem models is critical because errors in simulated GPP propagate through the model to introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower sites across(More)
As changes in climate become more apparent, ecologists face the challenge of predicting species responses to the new conditions. Most forecasts are based on climate envelopes (CE), correlative approaches that project future distributions on the basis of the current climate often assuming some dispersal lag. One major caveat with this approach is that it(More)
The potential for model-data synthesis is growing in importance as we enter an era of 'big data', greater connectivity and faster computation. Realizing this potential requires that the research community broaden its perspective about how and why they interact with models. Models can be viewed as scaffolds that allow data at different scales to inform each(More)
Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-air CO2(More)
Estimation of tree growth is based on sparse observations of tree diameter, ring widths, or increments read from a dendrometer. From annual measurements on a few trees (e.g., increment cores) or sporadic measurements from many trees (e.g., diameter censuses on mapped plots), relationships with resources, tree size, and climate are extrapolated to whole(More)
Models of forest ecosystems are needed to understand how climate and land-use change can impact biodiversity. In this paper we describe an ecological dispersal model developed for the specific case of predicting seed dispersal by trees on a landscape for use in a forest simulation model. We present efficient approximation algorithms for computing seed(More)
[1] Ecosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach(More)
We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2 ] (eCO2 ) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)-nitrogen (N) cycle processes. We decomposed the model responses into component processes(More)