Michael Berhanu

Learn More
PURPOSE Corneal confocal microscopy is a reiterative, rapid, noninvasive in vivo clinical examination technique capable of imaging corneal nerve fibers. Nerve fiber tortuosity may indicate a degenerative and attempted regenerative response of nerve fibers to diabetes. The purpose of this study was to define alterations in the tortuosity of corneal nerve(More)
The Von Kármán Sodium experiment yields a variety of dynamo regimes, when asymmetry is imparted to the flow by rotating impellers at different speed F1 and F2. We show that as the intensity of forcing, measured as F1 + F2, is increased, the transition to a self-sustained magnetic field is always observed via a supercritical bifurcation to a stationary(More)
We measure the swimming speed of a cylindrical version of Taylor's swimming sheet in viscoelastic fluids, and find that depending on the rheology, the speed can either increase or decrease relative to the speed in a Newtonian viscous fluid. The swimming stroke of the sheet is a prescribed propagating wave that travels along the sheet in the azimuthal(More)
We investigate the spatial structure of cohesive granular matter with spheres floating at an air-liquid interface that form disordered close packings with pores in between. The interface is slowly lowered in a conical container to uniformly compress and study the system as a function of area fraction ϕ. We find that the free area distributions associated(More)
We report the first experimental observation of a bistable dynamo regime. A turbulent flow of liquid sodium is generated between two disks in the von K ´ armán geometry (VKS experiment). When one disk is kept at rest, bistability is observed between a stationary and an oscillatory magnetic field. The stationary and oscillatory branches occur in the vicinity(More)
We investigate erosion patterns observed in a horizontal granular bed resulting from seepage of water motivated by observation of beach rills and channel growth in larger scale land forms. Our experimental apparatus consists of a wide rectangular box filled with glass beads with a narrow opening in one of the side walls from which eroded grains can exit.(More)
  • 1