Michael B Smolinski

  • Citations Per Year
Learn More
Additivity of functional group contributions to protein-ligand binding is a very popular concept in medicinal chemistry as the basis of rational design and optimized lead structures. Most of the currently applied scoring functions for docking build on such additivity models. Even though the limitation of this concept is well known, case studies examining in(More)
Accurately predicting the binding affinity of ligands to their receptors by computational methods is one of the major challenges in structure-based drug design. One of the potentially significant errors in these predictions is the common assumption that the ligand binding affinity contributions of noncovalent interactions are additive. Herein we present(More)
Successful design of potent and selective protein inhibitors, in terms of structure-based drug design, strongly relies on the correct understanding of the molecular features determining the ligand binding to the target protein. We present a case study of serine protease inhibitors with a bis(phenyl)methane moiety binding into the S3 pocket. These inhibitors(More)
Rho Kinase (ROCK) is a serine/threonine kinase whose inhibition could prove beneficial in numerous therapeutic areas. We have developed a promising class of ATP-competitive inhibitors based upon a benzimidazole scaffold, which show excellent potency toward ROCK (IC(50)<10nM). This report details the optimization of selectivity for ROCK over other related(More)
On the roots of the unchilled apple seedlings treated with morphactin many deformed adventitious shoots were formed, whereas when the roots were dipped in the mixture of morphactin and NAA more adventitious roots were produced than when only NAA was used. The growth of these lateral roots was greatly inhibited. Similar interaction of NAA with morphactin in(More)
The wood frog (Rana sylvatica) can survive the winter in a frozen state, in which the frog's tissues are also exposed to dehydration, ischemia, and anoxia. Critical to wood frog survival under these conditions is a global metabolic rate depression, the accumulation of glucose as a cryoprotectant, and a reliance on anaerobic glycolysis for energy production.(More)
  • 1