Michael B. Reid

Learn More
Reactive oxygen intermediates modulate skeletal muscle contraction, but little is known about the role of nitric oxide (NO). Here we show that rat skeletal muscle expresses neuronal-type NO synthase and that activity varies among several respiratory and limb muscles. Immunohistochemistry showed prominent staining of type II (fast) fibre cell membranes with(More)
1. We used intact single fibres from a mouse foot muscle to study the role of oxidation-reduction in the modulation of contractile function. 2. The oxidant hydrogen peroxide (H2O2, 100-300 microM) for brief periods did not change myoplasmic Ca2+ concentrations ([Ca2+]i) during submaximal tetani. However, force increased by 27 % during the same contractions.(More)
Atrogin1/MAFbx is an ubiquitin ligase that mediates muscle atrophy in a variety of catabolic states. We recently found that H2O2 stimulates atrogin1/MAFbx gene expression. Since the cytokine tumor necrosis factor-alpha (TNF-alpha) stimulates both reactive oxygen production and general activity of the ubiquitin conjugating pathway, we hypothesized that(More)
Skeletal muscle atrophy and weakness are thought to be stimulated by tumor necrosis factor alpha (TNF-alpha) in a variety of chronic diseases. However, little is known about the direct effects of TNF-alpha on differentiated skeletal muscle cells or the signaling mechanisms involved. We have tested the effects of TNF-alpha on the mouse-derived C2C12 muscle(More)
N-acetylcysteine (NAC) is a nonspecific antioxidant that selectively inhibits acute fatigue of rodent skeletal muscle stimulated at low (but not high) tetanic frequencies and that decreases contractile function of unfatigued muscle in a dose-dependent manner. The present experiments test the hypothesis that NAC pretreatment can inhibit acute muscular(More)
The respiratory and limb skeletal muscles become weakened in sepsis, congestive heart failure, and other inflammatory diseases. A potential mediator of muscle weakness is tumor necrosis factor (TNF)-alpha, a cytokine that can stimulate muscle wasting and also can induce contractile dysfunction without overt catabolism. This study addressed the latter(More)
We hypothesized that muscle fiber bundles produce reactive oxygen intermediates and that reactive oxidant species contribute to muscular fatigue in vitro. Fiber bundles from rat diaphragm were mounted in chambers containing Krebs-Ringer solution. In studies of intracellular oxidant kinetics, bundles were loaded with 2',7'-dichlorofluorescin, a fluorochrome(More)
1. Single skeletal muscle fibres from a mouse foot muscle were used to investigate the effects of nitric oxide on contractile function. 2. We measured force production and myoplasmic free Ca2+ concentration ([Ca2+]i) in single fibres exposed to the nitric oxide donors S-nitroso-N-acetylcysteine (SNAC) and nitroprusside. 3. The nitric oxide donors reduced(More)
MyoD, a master regulator of myogenesis, exhibits a circadian rhythm in its mRNA and protein levels, suggesting a possible role in the daily maintenance of muscle phenotype and function. We report that MyoD is a direct target of the circadian transcriptional activators CLOCK and BMAL1, which bind in a rhythmic manner to the core enhancer of the MyoD(More)
This study tested the hypothesis that reactive oxygen intermediates present in unfatigued skeletal muscle act to enhance contractile function. Fiber bundles from rat diaphragm were incubated with exogenous catalase (an antioxidant enzyme that dehydrates hydrogen peroxide to molecular oxygen and water) to decrease the tissue concentration of reactive oxygen(More)