Michael Assfalg

Learn More
Although functional diversity in polyubiquitin chain signaling has been ascribed to the ability of differently linked chains to bind in a distinctive manner to effector proteins, structural models of such interactions have been lacking. Here, we use NMR to unveil the structural basis of selective recognition of Lys48-linked di- and tetraubiquitin chains by(More)
Diverse cellular events are regulated by post-translational modification of substrate proteins via covalent attachment of one or a chain of ubiquitin molecules. The outcome of (poly)ubiquitination depends upon the specific lysine residues involved in the formation of polyubiquitin chains. Lys48-linked chains act as a universal signal for proteasomal(More)
The study of metabolic responses to drugs, environmental changes, and diseases is a new promising area of metabonomic research. Metabolic fingerprints can be obtained by analytical techniques such as nuclear magnetic resonance (NMR). In principle, alterations of these fingerprints due to appearance/disappearance or concentration changes of metabolites can(More)
An (15)N-enriched sample of the yeast iso-1-ferricytochrome c triple variant (Lys72Ala/Lys79Ala/Cys102Thr) in an alkaline conformation was examined by NMR spectroscopy. The mutations were planned to produce a cytochrome c with a single conformer. Despite suboptimal conditions for the collection of spectra (i.e., pH approximately equal to 11), NMR remains a(More)
Previous efforts to control cellular behaviour have largely relied upon various forms of genetic engineering. Once the genetic content of a living cell is modified, the behaviour of that cell typically changes as well. However, other methods of cellular control are possible. All cells sense and respond to their environment. Therefore, artificial, non-living(More)
Little is known regarding the post-transcriptional networks that control gene expression in eukaryotes. Additionally, we still need to understand how these networks evolve, and the relative role played in them by their sequence-dependent regulatory factors, non-coding RNAs (ncRNAs) and RNA-binding proteins (RBPs). Here, we used an approach that relied on(More)
The unfolding and refolding of a monomeric mutant of copper-zinc superoxide dismutase was investigated by NMR spectroscopy in the copper-reduced form and by using guanidinium chloride as denaturing agent. It is found that the protein gives rise to a series of intermediates at low guanidinium concentration and to a globular unfolded state at a guanidinium(More)
The redox reaction between CrO(4)(2-) and the fully reduced three-heme cytochrome c(7) from Desulfuromonas acetoxidans to give chromium(III) and the fully oxidized protein has been followed by NMR spectroscopy. The hyperfine coupling between the oxidized protein protons and chromium(III), which remains bound to the protein, gives rise to line-broadening(More)
Streptococcus agalactiae, also referred to as Group B Streptococcus (GBS), is one of the most common causes of life-threatening bacterial infections in infants. In recent years cell surface pili have been identified in several Gram-positive bacteria, including GBS, as important virulence factors and promising vaccine candidates. In GBS, three structurally(More)
Gram-positive bacteria build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates. Despite the availability of several crystal structures, pilus-related C sortases remain poorly characterized to date, and their mechanisms of transpeptidation and regulation need to be further investigated. The(More)