Learn More
Compromised blood-brain barrier permeability resulting from systemic inflammation has been implicated as a possible cause of brain damage in fetuses and newborns and may underlie white matter damage later in life. Rats at postnatal day (P) 0, P8 and P20 and opossums (Monodelphis domestica) at P15, P20, P35, P50 and P60 and adults of both species were(More)
Numerous studies have demonstrated anatomical and functional neuroplasticity following spinal cord injury. One of the more notable examples is return of ipsilateral phrenic motoneuron and diaphragm activity which can be induced under terminal neurophysiological conditions after high cervical hemisection in the rat. More recently it has been shown that a(More)
Paralysis of the diaphragm is a severe consequence of cervical spinal cord injury. This condition can be experimentally modeled by lateralized, high cervical lesions that interrupt descending inspiratory drive to the corresponding phrenic nucleus. Although partial recovery of ipsilateral diaphragm function occurs over time, recent findings show persisting(More)
Immature spinal cord, unlike adult, has an ability to repair itself following injury. Evidence for regeneration, structural repair and development of substantially normal locomotor behaviour comes from studies of marsupials due to their immaturity at birth. We have compared morphological, cellular and molecular changes in spinal cords transected at(More)
These studies define the time table and origin of supraspinal axons regenerating across a complete spinal transection in postnatal Monodelphis domestica. After lumbar (L1) spinal cord injection of fluorophore-dextran amine conjugate on postnatal (P) day 4, a consistent number of neurons could be labeled. The numbers of labeled neurons remained stable for(More)
Although monosynaptic bulbospinal projections to phrenic motoneurons have been extensively described, little is known about the organization of phrenic premotor neurons in the adult rat spinal cord. Because interneurons may play an important role in normal breathing and recovery following spinal cord injury, the present study has used anterograde and(More)
Medications used to treat rheumatoid arthritis (RA) may confer an increased risk of infection. We conducted a retrospective cohort study of veterans with RA followed in the United States Department of Veterans Affairs health care system from October 1998 through September 2005. Risk of hospitalization for infection associated with tumor necrosis factor(More)
The entry of therapeutic compounds into the brain and spinal cord is normally restricted by barrier mechanisms in cerebral blood vessels (blood-brain barrier) and choroid plexuses (blood-CSF barrier). In the injured brain, ruptured cerebral blood vessels circumvent these barrier mechanisms by allowing blood contents to escape directly into the brain(More)
BACKGROUND Antibiotics may interact with warfarin, increasing the risk for significant bleeding events. METHODS This is a retrospective cohort study of veterans who were prescribed warfarin for 30 days without interruption through the US Department of Veterans Affairs between October 1, 2002 and September 1, 2008. Antibiotics considered to be high risk(More)
Immunocytochemical distribution of the fetal protein fetuin in the neocortex of developing rat brain and the presence of its mRNA, as detected by using reverse transcriptase-polymerase chain reaction analysis, was studied in fetuses at embryonic day 15 (E15) through E22, in neonates at postnatal day 0 (P0) through P20, and in adults. Quantitative estimates(More)