Michael A. Phillips

Learn More
To form the building blocks of isoprenoids, isopentenyl diphosphate (IPP) isomerase activity, which converts IPP to dimethylallyl diphosphate (DMAPP), appears to be necessary in cytosol, plastids, and mitochondria. Arabidopsis thaliana contains only two IPP isomerases (Isopentenyl Diphosphate Isomerase1 [IDI1] and IDI2). Both encode proteins with N-terminal(More)
In climacteric fruit-bearing species, the onset of fruit ripening is marked by a transient rise in respiration rate and autocatalytic ethylene production, followed by rapid deterioration in fruit quality. In non-climacteric species, there is no increase in respiration or ethylene production at the beginning or during fruit ripening. Melon is unusual in(More)
Selective non-covalent interactions have been widely exploited in solution-based chemistry to direct the assembly of molecules into nanometre-sized functional structures such as capsules, switches and prototype machines. More recently, the concepts of supramolecular organization have also been applied to two-dimensional assemblies on surfaces stabilized by(More)
Quantitative real-time polymerase chain reaction (qRT-PCR) is a precise method to measure changes in gene transcript level. Accurate quantification requires careful RNA quality assessment, determination of primer efficiency, and selection of an appropriate reference gene. While many experimental procedures for these purposes have been described for(More)
Isopentenyl diphosphate isomerases (IDI) catalyze the interconversion of the two isoprenoid universal C5 units, isopentenyl diphosphate and dimethylally diphosphate, to allow the biosynthesis of the large variety of isoprenoids including both primary and specialized metabolites. This isomerisation is usually performed by two distinct IDI isoforms located(More)
The 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway provides the precursors for the biosynthesis of plastidial isoprenoids, which include the carotenoid pigments of many fruits. We have analysed the genes encoding the seven enzymes of the MEP pathway in melon (Cucumis melo L.) and determined that the first one, 1-deoxyxylulose 5-phosphate synthase (DXS),(More)
Plastidial isoprenoids are a diverse group of metabolites with roles in photosynthesis, growth regulation, and interaction with the environment. The methylerythritol 4-phosphate (MEP) pathway produces the metabolic precursors of all types of plastidial isoprenoids. Proteomics studies in Arabidopsis thaliana have shown that all the enzymes of the MEP pathway(More)
To form the building blocks of isoprenoids, isopentenyl diphosphate (IPP) isomerase activity, which converts IPP to dimethylallyl diphosphate (DMAPP), appears to be necessary in cytosol, plastids, and mitochondria. Arabidopsis thaliana contains only two IPP isomerases (Isopentenyl Diphosphate Isomerase1 [IDI1] and IDI2). Both encode proteins with N-terminal(More)
  • 1