Learn More
Many genetic processes depend on proteins interacting with specific sequences on DNA. Despite the large excess of nonspecific DNA in the cell, proteins can locate their targets rapidly. After initial nonspecific binding, they are believed to find the target site by 1D diffusion ("sliding") interspersed by 3D dissociation/reassociation, a process usually(More)
We derive the boundary condition for a subdiffusive particle interacting with a reactive boundary with a finite reaction rate. Molecular crowding conditions, that are found to cause subdiffusion of larger molecules in biological cells, are shown to effect long-tailed distributions with an identical exponent for both the unbinding times from the boundary to(More)
We investigate the effect on biomembrane mechanical properties due to the presence an external potential for a nonconductive incompressible membrane surrounded by different electrolytes. By solving the Debye-Hückel and Laplace equations for the electrostatic potential and using the relevant stress-tensor we find (1) in the small screening length limit,(More)
When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If the DNA molecule is kept in a straight configuration, for(More)
We study the search process of a target on a rapidly folding polymer ("DNA") by an ensemble of particles ("proteins"), whose search combines 1D diffusion along the chain, Lévy type diffusion mediated by chain looping, and volume exchange. A rich behavior of the search process is obtained with respect to the physical parameters, in particular, for the(More)
In this paper, the dynamics of spontaneous shape fluctuations of a single, giant quasi-spherical vesicle formed from a single lipid species is revisited theoretically. A coherent physical theory for the dynamics is developed based on a number of fundamental principles and considerations, and a systematic formulation of the theory is also established. From(More)
UNLABELLED BACKGROUND Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE), an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the plasma membrane.(More)
Under molecular crowding conditions, biopolymers have been reported to subdiffuse, (r(2)(t)) approximately = t(alpha), with 0 <alpha < 1. Here we study the exchange dynamics of such a subdiffusing particle with a reactive boundary using a continuous time random walk approach. We derive the generalized boundary condition and consider the unbinding from the(More)
Recent experiments show that transcription factors (TFs) indeed use the facilitated diffusion mechanism to locate their target sequences on DNA in living bacteria cells: TFs alternate between sliding motion along DNA and relocation events through the cytoplasm. From simulations and theoretical analysis we study the TF-sliding motion for a large section of(More)
We study a Michaelis-Menten reaction for a single two-state enzyme molecule, whose transition rates between the two conformations are modulated by an harmonically oscillating external force. In particular, we obtain a range of optimal driving frequencies for changing the conformation of the enzyme, thereby controlling the enzymatic activity (i.e., product(More)