Michael A. Kerr

Learn More
The vast surfaces of the gastrointestinal, respiratory, and genitourinary tracts represent major sites of potential attack by invading micro-organisms. Immunoglobulin A (IgA), as the principal antibody class in the secretions that bathe these mucosal surfaces, acts as an important first line of defence. IgA, also an important serum immunoglobulin, mediates(More)
Analysis of photosynthetic reaction centers from Rhodopseudomonas sphaeroides strains 2.4.1 and Ga shows that each contains approx. 1 mol of a specific carotenoid per mol of reaction center. In strain 2.4.1. the carotenoid is spheroidene (1-methoxy-3,4-didehydro-1,2,7',8',-tetrahydro-psi,psi-carotene); in strain Ga, it is chloroxanthin (1-hydroxy-1, 2, 7',(More)
Secretory component (SC) in association with polymeric IgA (pIgA) forms secretory IgA (SIgA), the major antibody active at mucosal surfaces. SC also exists in a free form in secretions, with innate neutralizing properties against important pathogens. IgA-bound SC and free secretory component (FSC) are both produced by proteolytic cleavage of the polymeric(More)
Immunoglobulin A (IgA) is unique amongst antibodies in being able to form polymeric structures that may possess important functions in the pathology of specific diseases. IgA also forms complexes with other plasma proteins, the IgA1-human serum albumin (HSA) complex (IgA1-HSA) being typical. We have purified this complex using a novel two-step purification(More)
The construction of heterocyclic compounds from activated cyclopropane derivatives offers an alternative strategy for the preparation of molecules that may be of interest from a structural or biological standpoint. Several newly developed methods provide access to densely functionalized heterocycles in a manner that can be considered useful for both(More)
The intramolecular reaction of oxime ethers and cyclopropane diesters results in the diastereoselective formation of substituted pyrrolo-isoxazolidines which serve as precursors to the ubiquitous pyrrolidine motif. A simple reversal of addition order of catalyst and substrate results in formation of two discrete diastereomers in a highly selective and(More)