Michael A. Heitkamp

Learn More
The degradation of pyrene, a polycyclic aromatic hydrocarbon containing four aromatic rings, by pure cultures of a Mycobacterium sp. was studied. Over 60% of [14C]pyrene was mineralized to CO2 after 96 h of incubation at 24 degrees C. High-pressure liquid chromatography analyses showed the presence of one major and at least six other metabolites that(More)
Microbiological analyses of sediments chronically exposed to petrogenic hydrocarbons resulted in the isolation of a gram-positive, rod-shaped bacterium which mineralized naphthalene (59.5% of the original amount), phenanthrene (50.9%), fluoranthene (89.7%), pyrene (63.0%), 1-nitropyrene (12.3%), 3-methylcholanthrene (1.6%), and 6-nitrochrysene (2.0%) to(More)
Microbiological analyses of sediments located near a point source for petrogenic chemicals resulted in the isolation of a pyrene-mineralizing bacterium. This isolate was identified as a Mycobacterium sp. on the basis of its cellular and colony morphology, gram-positive and strong acid-fast reactions, diagnostic biochemical tests, 66.6% G + C content of the(More)
Whether Escherichia coli K-12 strain W3110 can enter the "viable but nonculturable" state was studied with sterile and nonsterile water and soil at various temperatures. In nonsterile river water, the plate counts of added E. coli cells dropped to less than 10 CFU/ml in less than 10 days. Acridine orange direct counts, direct viable counts,(More)
Microbiological analyses of activated sludge reactors after repeated exposure to 100 mg of p-nitrophenol (PNP) per liter resulted in the isolation of three Pseudomonas species able to utilize PNP as a sole source of carbon and energy. Cell suspensions of the three Pseudomonas sp., designated PNP1, PNP2, and PNP3, mineralized 70, 60, and 45% of a 70-mg/liter(More)
Naphthalene biodegradation was investigated in microcosms containing sediment and water collected from three ecosystems which varied in past exposure to anthropogenic and petrogenic chemicals. Mineralization half-lives for naphthalene in microcosms ranged from 2.4 weeks in sediment chronically exposed to petroleum hydrocarbons to 4.4 weeks in sediment from(More)
Microcosm studies were conducted to evaluate the survival and performance of a recently discovered polycyclic aromatic hydrocarbon (PAH)-degrading Mycobacterium sp. when this organism was added to sediment and water from a pristine ecosystem. Microcosms inoculated with the Mycobacterium sp. showed enhanced mineralization, singly and as components in a(More)
Microbiological analyses of sediments located near a point source for petrogenic chemicals resulted in the isolation of a pyrene-mineralizing bacterium. This isolate was identified as a Mycobacterium sp. on the basis of its cellular and colony morphology, gram-positive and strong acid-fast reactions, diagnostic biochemical tests, 66.6% G+C content of the(More)
The biodegradation of tert-butylphenyl diphenyl phosphate (BPDP) was examined in microcosms containing sediment and water from five different ecosystems as part of our studies to elucidate the environmental fate of phosphate ester flame retardants. Biodegradation of [14C]BPDP was monitored in the environmental microcosms by measuring the evolution of 14CO2.(More)